[go: up one dir, main page]

login
A038611
Primes not containing the digit '3'.
14
2, 5, 7, 11, 17, 19, 29, 41, 47, 59, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 149, 151, 157, 167, 179, 181, 191, 197, 199, 211, 227, 229, 241, 251, 257, 269, 271, 277, 281, 401, 409, 419, 421, 449, 457, 461, 467, 479, 487, 491, 499, 509, 521, 541, 547, 557
OFFSET
1,1
COMMENTS
Subsequence of primes of A052405. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016
LINKS
M. F. Hasler, Numbers avoiding certain digits, OEIS wiki, Jan 12 2020.
James Maynard, Primes with restricted digits, arXiv:1604.01041 [math.NT], 2016.
James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019).
FORMULA
a(n) ~ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023
MATHEMATICA
Select[Prime[Range[70]], DigitCount[#, 10, 3] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(600) | not 3 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
(PARI)
lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p), , 8), 3), print1(p, ", ")); ); \\ Michel Marcus, Feb 22 2015
(PARI)
( {A038611_upto(N, M=1)=select( is_A052405, primes([M, N]))} )(350)
(PARI)
next_A038611(n)={until((n=nextprime(n+1))==n=next_A052405(n-1), ); n}
( {A038611_vec(n, M=2)=M--; vector(n, i, M=next_A038611(M))} )(20, 1000)
\\ Get 20 terms >= 1000. See also OEIS wiki page. - M. F. Hasler, Jan 14 2020
(Python)
from sympy import isprime
i=j=1
while j<=5000:
if isprime(i) and "3" not in str(i):
print(str(j)+" "+str(i))
j+=1
i+=1 # Indranil Ghosh, Feb 07 2017
CROSSREFS
Intersection of A000040 (primes) and A052405 (numbers with no digit 3).
Primes having no digit d = 0..9 are A038618, A038603, A038604, this sequence, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.
Sequence in context: A323698 A045348 A023207 * A265761 A023213 A162575
KEYWORD
nonn,easy,base
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Aug 07 2011
STATUS
approved