[go: up one dir, main page]

login
A010846
Number of numbers <= n whose set of prime factors is a subset of the set of prime factors of n.
66
1, 2, 2, 3, 2, 5, 2, 4, 3, 6, 2, 8, 2, 6, 5, 5, 2, 10, 2, 8, 5, 7, 2, 11, 3, 7, 4, 8, 2, 18, 2, 6, 6, 8, 5, 14, 2, 8, 6, 11, 2, 19, 2, 9, 8, 8, 2, 15, 3, 12, 6, 9, 2, 16, 5, 11, 6, 8, 2, 26, 2, 8, 8, 7, 5, 22, 2, 10, 6, 20, 2, 18, 2, 9, 9, 10, 5, 23, 2, 14, 5, 9, 2, 28, 5, 9, 7, 11, 2, 32, 5, 10
OFFSET
1,2
COMMENTS
This function of n appears in an ABC-conjecture by Andrew Granville. See Goldfeld. - T. D. Noe, Jun 30 2009
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 5000 terms from T. D. Noe)
FORMULA
a(n) = |{k<=n, k|n^(tau(k)-1)}|. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{j = 1..n} Product_{primes p | j} delta(n mod p,0) where delta is the Kronecker delta. - Robert Israel, Feb 09 2015
a(n) = Sum_{1<=k<=n,(n,k)=1} mu(k)*floor(n/k). - Benoit Cloitre, May 07 2016
a(n) = Sum_{k=1..n} floor(n^k/k)-floor((n^k -1)/k). - Anthony Browne, May 28 2016
EXAMPLE
From Wolfdieter Lang, Jun 30 2014: (Start)
a(1) = 1 because the empty set is a subset of any set.
a(6) = 5 from the five numbers: 1 with the empty set, 2 with the set {2}, 3 with {3}, 4 with {2} and 6 with {2,3}, which are all subsets of {2,3}. 5 is out because {5} is not a subset of {2,3}. (End)
From David A. Corneth, Feb 10 2015: (Start)
Let p# be the product of primes up to p, A002110. Then,
a(13#) = 1161
a(17#) = 4843
a(19#) = 19985
a(23#) = 83074
a(29#) = 349670
a(31#) = 1456458
a(37#) = 6107257
a(41#) = 25547835
(End)
MAPLE
A:= proc(n) local F, S, s, j, p;
F:= numtheory:-factorset(n);
S:= {1};
for p in F do
S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)}
od;
nops(S)
end proc;
seq(A(n), n=1..1000); # Robert Israel, Jun 27 2014
MATHEMATICA
pf[n_] := If[n==1, {}, Transpose[FactorInteger[n]][[1]]]; SubsetQ[lst1_, lst2_] := Intersection[lst1, lst2]==lst1; Table[pfn=pf[n]; Length[Select[Range[n], SubsetQ[pf[ # ], pfn] &]], {n, 100}] (* T. D. Noe, Jun 30 2009 *)
Table[Total[MoebiusMu[#] Floor[n/#] &@ Select[Range@ n, CoprimeQ[#, n] &]], {n, 92}] (* Michael De Vlieger, May 08 2016 *)
PROG
(PARI) a(n, f=factor(n)[, 1])=if(#f>1, my(v=f[1..#f-1], p=f[#f], s); while(n>0, s+=a(n, v); n\=p); s, if(#f&&n>0, log(n+.5)\log(f[1])+1, n>0)) \\ Charles R Greathouse IV, Jun 27 2013
(PARI) a(n) = sum(k=1, n, if(gcd(n, k)-1, 0, moebius(k)*(n\k))) \\ Benoit Cloitre, May 07 2016
(PARI) a(n, f=factor(n)[, 1])=if(#f<2, return(if(#f, valuation(n, f[1])+1, 0))); my(v=f[1..#f-1], p=f[#f], s); while(n, s+=a(n, v); n\=p); s \\ Charles R Greathouse IV, Nov 03 2021
(Python)
def A010846(n): return sum((m:=n**k)//k-(m-1)//k for k in range(1, n+1)) # Chai Wah Wu, Aug 15 2024
CROSSREFS
Cf. A162306 (numbers for each n).
Sequence in context: A244098 A285573 A325339 * A073023 A173754 A180125
KEYWORD
nonn,easy
EXTENSIONS
Definition made more precise at the suggestion of Wolfdieter Lang
STATUS
approved