[go: up one dir, main page]

login
A285573
Number of finite nonempty sets of pairwise indivisible divisors of n.
49
1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 9, 2, 5, 5, 5, 2, 9, 2, 9, 5, 5, 2, 14, 3, 5, 4, 9, 2, 19, 2, 6, 5, 5, 5, 19, 2, 5, 5, 14, 2, 19, 2, 9, 9, 5, 2, 20, 3, 9, 5, 9, 2, 14, 5, 14, 5, 5, 2, 49, 2, 5, 9, 7, 5, 19, 2, 9, 5, 19, 2, 34, 2, 5, 9, 9, 5, 19, 2, 20, 5, 5, 2, 49, 5, 5, 5, 14, 2, 49, 5, 9, 5, 5, 5, 27, 2, 9, 9, 19
OFFSET
1,2
COMMENTS
From Robert Israel, Apr 21 2017: (Start)
If n = p^k for prime p, a(n) = k+1.
If n = p^j*q^k for distinct primes p,q, a(n) = binomial(j+k+2,j+1)-1. (End)
EXAMPLE
The a(12)=9 sets are: {1}, {2}, {3}, {4}, {6}, {12}, {2,3}, {3,4}, {4,6}.
MAPLE
g:= proc(S) local x, Sx; option remember;
if nops(S) = 0 then return {{}} fi;
x:= S[1];
Sx:= subsop(1=NULL, S);
procname(Sx) union map(t -> t union {x}, procname(remove(s -> s mod x = 0 or x mod s = 0, Sx)))
end proc:
f:= proc(n) local F, D;
F:= ifactors(n)[2];
D:= numtheory:-divisors(mul(ithprime(i)^F[i, 2], i=1..nops(F)));
nops(g(D)) - 1;
end proc:
map(f, [$1..100]); # Robert Israel, Apr 21 2017
MATHEMATICA
nn=50;
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Rest[stableSets[Divisors[n], Divisible]]], {n, 1, nn}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 21 2017
STATUS
approved