[go: up one dir, main page]

login
A008618
Expansion of 1/((1-x^2)(1-x^9)).
1
1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4
OFFSET
0,19
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
LINKS
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -1).
FORMULA
a(n) = floor((2*n+27+9*(-1)^n)/36). - Tani Akinari, May 19 2014
MATHEMATICA
CoefficientList[Series[1 / ((1 - x^2) (1 - x^9)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 22 2013 *)
PROG
(PARI) a(n)=floor((2*n+27+9*(-1)^n)/36) \\ Tani Akinari, May 19 2014
CROSSREFS
Sequence in context: A298475 A175096 A111627 * A339368 A225572 A318471
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Typo in name fixed by Vincenzo Librandi, Jun 22 2013
STATUS
approved