[go: up one dir, main page]

login
A008616
Expansion of 1/((1-x^2)(1-x^5)).
9
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 9, 9, 9, 9, 9, 9, 10, 9, 10, 9, 10, 10, 10, 10, 10, 10
OFFSET
0,11
COMMENTS
Number of partitions of n into parts of size two and five.
It appears that, for n >= 2, a(n-2) is also (1) the number of partitions of 3n that are 6-term arithmetic progressions and (2) floor(n/2) - floor(2n/5). - John W. Layman, Jun 29 2009
REFERENCES
G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. page 30, Exercise 48.
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
FORMULA
G.f.: 1/((1-x^2)(1-x^5)) = 1/((x-1)^2*(1+x)*(1+x+x^2+x^3+x^4)).
Euler transform of finite sequence [0, 1, 0, 0, 1].
a(n) = -a(-7 - n) = a(n - 10) + 1 = a(n - 2) + a(n - 5) - a(n - 7). - Michael Somos, Jan 25 2005
A000217(a(n)) = A025810(n). - Michael Somos, Dec 15 2002
a(n) = 7/20 + n/10 + (-1)^n/4 + (A105384(n) + 2*(A010891(n) + A105384(n+4)))/5. - R. J. Mathar, Jun 28 2009
a(n) = floor(n/10 + (3 + (-1)^n)/4). - Tani Akinari, Jun 20 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - x^2) (1 - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 21 2013 *)
PROG
(PARI) {a(n) = if( n<-6, -a(-7 - n), polcoeff( 1 / (1 - x^2) / (1 - x^5) + x * O(x^n), n))} /* Michael Somos, Jan 25 2005 */
(PARI) a(n) = floor(n/10+(3+(-1)^n)/4) \\ Charles R Greathouse IV, Jun 19 2013
(Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x^2)*(1-x^5)))); // Wesley Ivan Hurt, Dec 27 2021
CROSSREFS
Cf. A008615. - John W. Layman, Jun 29 2009
Sequence in context: A083023 A084359 A143935 * A331973 A097471 A025868
KEYWORD
nonn,easy
STATUS
approved