OFFSET
0,5
COMMENTS
Arises from Gleason's theorem on self-dual codes: 1/((1-x^2)*(1-x^8)) is the Molien series for the real 2-dimensional Clifford group (a dihedral group of order 16) of genus 1.
Thickness of the hypercube graph Q_n. - Eric W. Weisstein, Sep 09 2008
Count of odd numbers between consecutive quarter-squares, A002620. Oppermann's conjecture states that for each count there will be at least one prime. - Fred Daniel Kline, Sep 10 2011
Number of partitions into parts 1 and 4. - Joerg Arndt, Jun 01 2013
a(n-1) is the minimum independence number over all planar graphs with n vertices. The bound follows from the Four Color Theorem. It is attained by a union of 4-cliques. Other extremal graphs are examined in the Bickle link. - Allan Bickle, Feb 04 2022
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, 1977, Chapter 19, Problem 3, p. 602.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Allan Bickle, Independence Number of Maximal Planar Graphs, Congr. Num. 234 (2019) 61-68.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 211
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Eric Weisstein's World of Mathematics, Graph Thickness
Wikipedia, Oppermann's conjecture
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
a(n) = floor(n/4) + 1.
a(n) = A010766(n+4, 4).
Also, a(n) = ceiling((n+1)/4), n >= 0. - Mohammad K. Azarian, May 22 2007
a(x,y) := floor(x/2) + floor(y/2) - x where x = A002620(n) and y = A002620(n+1), n > 2. - Fred Daniel Kline, Sep 10 2011
a(n) = a(n-1) + a(n-4) - a(n-5); a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=2. - Harvey P. Dale, Feb 19 2012
From R. J. Mathar, Jun 04 2021: (Start)
G.f.: 1 / ( (1+x)*(1+x^2)*(x-1)^2 ).
a(n) + a(n-1) = A004524(n+3).
a(n) + a(n-2) = A008619(n). (End)
a(n) = A002265(n) + 1. - M. F. Hasler, Oct 17 2022
MATHEMATICA
Table[Floor[n/4]+1, {n, 0, 80}] (* Stefan Steinerberger, Apr 03 2006 *)
CoefficientList[Series[1/((1-x)(1-x^4)), {x, 0, 80}], x] (* Harvey P. Dale, Feb 19 2012 *)
Flatten[ Table[ PadRight[{}, 4, n], {n, 19}]] (* Harvey P. Dale, Feb 19 2012 *)
PROG
(PARI) a(n)=n\4+1 \\ Charles R Greathouse IV, Feb 06 2017
(Python) [n//4+1 for n in range(85)] # Gennady Eremin, Mar 01 2022
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Stefan Steinerberger, Apr 03 2006
STATUS
approved