OFFSET
0,4
COMMENTS
An atomic species is one that is not the product of smaller species. - Christian G. Bower, Feb 23 2006
A permutation group is connected if it is not the direct product of smaller permutation groups. - Christian G. Bower, Feb 23 2006
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 147.
Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Decoste, G. Labelle & J. Labelle, Espèces sur les petites cardinalités Tableaux divers, Université du Québec à Montréal (octobre 1988), Unpublished.
Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58. (Annotated scanned copy of preprint)
J. Labelle and Y. N. Yeh, The relation between Burnside rings and combinatorial species, J. Combin. Theory, A 50 (1989), 269-284.
L. Naughton and G. Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013 and J. Int. Seq. 16 (2013) #13.5.8.
N. J. A. Sloane, Transforms
FORMULA
Inverse Euler transform of A000638. Define b(n), c(n), d(): b(1)=d(1)=0. b(k)=A005227(k), k>1. c(k)=A000638(k), k>0. d(k)=a(k), k>1. d is Dirichlet convolution of b and c. - Christian G. Bower, Feb 23 2006
MATHEMATICA
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
EXTENSIONS
a(11) corrected and a(12) added by Christian G. Bower, Feb 23 2006 based on Goetz Pfeiffer's edit to A000638.
Could be extended to a(18) now using the new terms for A000637. - N. J. A. Sloane, Jul 30 2010
a(13) from Liam Naughton, Nov 23 2012
a(14)-a(18) from the inverse Euler transform of A000637. - R. J. Mathar, Mar 03 2015
STATUS
approved