[go: up one dir, main page]

login
A130087
Denominator of product{k=1 to n} k^mu(k), where mu is the Moebius function A008683.
7
1, 2, 6, 6, 30, 5, 35, 35, 35, 7, 77, 77, 1001, 143, 143, 143, 2431, 2431, 46189, 46189, 46189, 4199, 96577, 96577, 96577, 7429, 7429, 7429, 215441, 215441, 6678671, 6678671, 6678671, 392863, 392863, 392863, 14535931, 765049, 765049, 765049
OFFSET
1,2
COMMENTS
a(n) is also the denominator of H(n)^2 * n! for all n < 897, where H(n) = 1 + 1/2 + ... + 1/n is the n-th harmonic number. - John M. Campbell, May 13 2011
LINKS
Ivan Neretin and Michael De Vlieger, Table of n, a(n) for n = 1..4642 (first 1000 terms from Ivan Neretin)
MAPLE
with(numtheory): a:=n->denom(product(k^mobius(k), k=1..n)): seq(a(n), n=1..50); # Emeric Deutsch, May 11 2007
MATHEMATICA
Table[Denominator[HarmonicNumber[n]^2*(n!)], {n, 200}]
(* Second program: *)
With[{s = Array[#^MoebiusMu@ # &, 39]}, Denominator@ Table[Times @@ Take[s, n], {n, Length@ s}]] (* Michael De Vlieger, Sep 20 2017 *)
PROG
(PARI) a(n)=denominator(prod(k=1, n, k^moebius(k))) \\ Charles R Greathouse IV, Mar 10 2012
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, May 06 2007
EXTENSIONS
More terms from Emeric Deutsch, May 11 2007
STATUS
approved