[go: up one dir, main page]

login
A004211
Shifts one place left under 2nd-order binomial transform.
(Formerly M2900)
53
1, 1, 3, 11, 49, 257, 1539, 10299, 75905, 609441, 5284451, 49134923, 487026929, 5120905441, 56878092067, 664920021819, 8155340557697, 104652541401025, 1401572711758403, 19546873773314571, 283314887789276721, 4259997696504874817, 66341623494636864963
OFFSET
0,3
COMMENTS
Equals the eigensequence of A038207, the square of Pascal's triangle. - Gary W. Adamson, Apr 10 2009
The g.f. of the second binomial transform is 1/(1-2x-x/(1-2x/(1-2x-x/(1-4x/(1-2x-x/(1-6x/(1-2x-x/(1-8x/(1-... (continued fraction). - Paul Barry, Dec 04 2009
Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+2 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=2, otherwise F(k+1)=F(k); see example and Fxtbook link. - Joerg Arndt, Apr 30 2011
It appears that the infinite set of "Shifts 1 place left under N-th order binomial transform" sequences has a production matrix of:
1, N, 0, 0, 0, ...
1, 1, N, 0, 0, ...
1, 2, 1, N, 0, ...
1, 3, 3, 1, N, ...
... (where a diagonal of (N,N,N,...) is appended to the right of Pascal's triangle). a(n) in each sequence is the upper left term of M^n such that N=1 generates A000110, then (N=2 - A004211), (N=3 - A004212), (N=4 - A004213), (N=5 - A005011), ... - Gary W. Adamson, Jul 29 2011
Number of "unlabeled" hierarchical orderings on set partitions of {1..n}, see comments on A034691. - Gus Wiseman, Mar 03 2016
From Lorenzo Sauras Altuzarra, Jun 17 2022: (Start)
Number of n-variate noncontradictory conjunctions of logical equalities of literals (modulo logical equivalence).
Equivalently, number of n-variate noncontradictory Krom formulas with palindromic truth-vector (modulo logical equivalence).
a(n) <= A109457(n). (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), section 17.3.5, pp. 366-368
Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, On the Limiting Vacillating Tableaux for Integer Sequences, arXiv:2208.13091 [math.CO], 2022.
Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See pp. 22, 29.
David Callan (Proposer), Problem 11567, Amer. Math. Monthly, 118 (2011), 371-378.
Agustina Czenky, Unoriented 2-dimensional TQFTs and the category Rep(S_t wr Z_2), arXiv:2306.08826 [math.QA], 2023. See p. 40.
I. M. Gessel, Applications of the classical umbral calculus, arXiv:math/0108121v3 [math.CO], 2001.
Adam M. Goyt and Lara K. Pudwell, Solution to Monthly Problem 11567, 14 May 2011.
Adalbert Kerber, A matrix of combinatorial numbers related to the symmetric groups, Discrete Math., 21 (1978), 319-321.
Adalbert Kerber, A matrix of combinatorial numbers related to the symmetric groups<, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]
Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 20.
Janusz Milek, Quantum Implementation of Risk Analysis-relevant Copulas, arXiv:2002.07389 [stat.ME], 2020.
N. J. A. Sloane, Transforms
FORMULA
E.g.f. A(x) satisfies A'(x)/A(x) = e^(2x).
E.g.f.: exp(sinh(x)*exp(x)) = exp(Integral_{t = 0..x} exp(2*t)) = exp((exp(2*x)-1)/2). - Joerg Arndt, Apr 30 2011 and May 13 2011
a(n) = Sum_{k=0..n} 2^(n-k)*Stirling2(n, k). - Emeric Deutsch, Feb 11 2002
G.f.: Sum_{k >= 0} x^k/Product_{j = 1..k} (1-2*j*x). - Ralf Stephan, Apr 18 2004
Stirling transform of A000085. - Vladeta Jovovic May 14 2004
O.g.f.: A(x) = 1/(1-x-2*x^2/(1-3*x-4*x^2/(1-5*x-6*x^2/(1-... -(2*n-1)*x-2*n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n) = e^(-1/2)*2^{n-1}*f_n(1/2). - Milan Janjic, May 30 2008
G.f.: 1/(1-x/(1-2x/(1-x/(1-4x/(1-x/(1-6x/(1-x/(1-8x/(1-... (continued fraction). - Paul Barry, Dec 04 2009
a(n) = upper left term in M^n, M = an infinite square production matrix with an appended diagonal of (2,2,2,...) to the right of Pascal's triangle:
1, 2, 0, 0, 0, ...
1, 1, 2, 0, 0, ...
1, 2, 1, 2, 0, ...
1, 3, 3, 1, 2, ...
... - Gary W. Adamson, Jul 29 2011
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+2*x)*d/dx. Cf. A000110. - Peter Bala, Nov 25 2011
G.f. A(x) satisfies A(x)=1+x/(1-2*x)*A(x/(1-2*x)), a(n) = Sum_{k=1..n} binomial(n-1,k-1)*2^(n-k)*a(k-1), a(0)=1. - Vladimir Kruchinin, Nov 28 2011 [corrected by Ilya Gutkovskiy, May 02 2019]
From Peter Bala, May 16 2012: (Start)
Recurrence equation: a(n+1) = Sum_{k = 0..n} 2^(n-k)*C(n,k)*a(k).
Written umbrally this is a(n+1) = (a + 2)^n (expand the binomial and replace a^k with a(k)). More generally, a*f(a) = f(a+2) holds umbrally for any polynomial f(x). An inductive argument then establishes the umbral recurrence a*(a-2)*(a-4)*...*(a-2*(n-1)) = 1 with a(0) = 1. Compare with the Bell numbers B(n) = A000110(n), which satisfy the umbral recurrence B*(B-1)*...*(B-(n-1)) = 1 with B(0) = 1. Cf. A009235.
Touchard's congruence holds: for odd prime p, a(p+k) == (a(k) + a(k+1)) (mod p) for k = 0,1,2,... (adapt the proof of Theorem 10.1 in Gessel). In particular, a(p) == 2 (mod p) for odd prime p. (End)
G.f.: (2/E(0) - 1)/x where E(k) = 1 + 1/(1 + 2*x/(1 - 4*(k+1)*x/E(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 20 2012
G.f.: (1/E(0)-1)/x where E(k) = 1 - x/(1 + 2*x - 2*x*(k+1)/E(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Sep 21 2012
a(n) = -1 + 2*Sum_{k=0..n} C(n,k)*A166922(k). - Peter Luschny, Nov 01 2012
G.f.: G(0)- 1/x where G(k) = 1 - (4*x*k-1)/(x - x^4/(x^3 - (4*x*k-1)*(4*x*k+2*x-1)*(4*x*k+4*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 08 2013.
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2*k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: -G(0) where G(k) = 1 + 2*(1-k*x)/(2*k*x - 1 - x*(2*k*x - 1)/(x - 2*(1-k*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2013
G.f.: 1/Q(0), where Q(k) = 1 - x/(1 - 2*x*(2*k+1)/( 1 - x/(1 - 4*x*(k+1)/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Apr 15 2013
G.f.: 1 + x/Q(0), where Q(k)= 1 - x*(2*k+3) - x^2*(2*k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 05 2013
For n > 0, a(n) = exp(-1/2)*Sum_{k > 0} (2*k)^n/(k!*2^k). - Vladimir Reshetnikov, May 09 2013
G.f.: -(1+(2*x+1)/G(0))/x, where G(k)= 2*x*k - x - 1 - 2*(k+1)*x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 20 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
Sum_{k=0..n} C(n,k)*a(k)*a(n-k) = 2^n*Bell(n) = A055882(n). - Vaclav Kotesovec, Apr 03 2016
a(n) ~ 2^n * n^n * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^n). - Vaclav Kotesovec, Jan 07 2019, simplified Oct 01 2022
a(n) = B_n(2^0, ..., 2^(n - 1)), where B_n(x_1, ..., x_n) is the n-th complete Bell polynomial. - Lorenzo Sauras Altuzarra, Jun 17 2022
EXAMPLE
From Joerg Arndt, Apr 30 2011: (Start)
Restricted growth strings: a(0)=1 corresponds to the empty string;
a(1)=1 to [0]; a(2)=3 to [00], [01], and [02]; a(3) = 11 to
RGS F
[ 1] [ 0 0 0 ] [ 0 0 0 ]
[ 2] [ 0 0 1 ] [ 0 0 0 ]
[ 3] [ 0 0 2 ] [ 0 0 2 ]
[ 4] [ 0 1 0 ] [ 0 0 0 ]
[ 5] [ 0 1 1 ] [ 0 0 0 ]
[ 6] [ 0 1 2 ] [ 0 0 2 ]
[ 7] [ 0 2 0 ] [ 0 2 2 ]
[ 8] [ 0 2 1 ] [ 0 2 2 ]
[ 9] [ 0 2 2 ] [ 0 2 2 ]
[10] [ 0 2 3 ] [ 0 2 2 ]
[11] [ 0 2 4 ] [ 0 2 4 ]. (End)
From Lorenzo Sauras Altuzarra, Jun 17 2022: (Start)
The 11 trivariate noncontradictory conjunctions of logical equalities of literals are (x <-> y) /\ (y <-> z), (~ x <-> y) /\ (y <-> z), (x <-> ~ y) /\ (~ y <-> z), (x <-> y) /\ (y <-> ~ z), (x <-> y) /\ (z <-> z), (~ x <-> y) /\ (z <-> z), (x <-> z) /\ (y <-> y), (~ x <-> z) /\ (y <-> y), (y <-> z) /\ (x <-> x), (~ y <-> z) /\ (x <-> x), and (x <-> x) /\ (y <-> y) /\ (z <-> z) (modulo logical equivalence).
The third complete Bell polynomial is x^3 + 3 x y + z; and note that (2^0)^3 + 3*2^0*2^1 + 2^2 = 11.
The truth-vector of (x <-> y) /\ (y <-> z), 10000001, is palindromic. (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*2^(j-1), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, May 30 2021
# second Maple program:
a:= n -> CompleteBellB(n, seq(2^k, k=0..n)):
seq(a(n), n=0..23); # Lorenzo Sauras Altuzarra, Jun 17 2022
MATHEMATICA
Table[ Sum[ StirlingS2[ n, k ] 2^(-k+n), {k, n} ], {n, 16} ] (* Wouter Meeussen *)
Table[2^n BellB[n, 1/2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
PROG
(PARI) x='x+O('x^66);
egf=exp(intformal(exp(2*x))); /* = 1 + x + 3/2*x^2 + 11/6*x^3 + ... */
/* egf=exp(1/2*(exp(2*x)-1)) */ /* alternative e.g.f. */
Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */
(Maxima)
a(n):=if n=0 then 1 else sum(2^(n-k)*binomial(n-1, k-1)*a(k-1), k, 1, n); /* Vladimir Kruchinin, Nov 28 2011 */
(SageMath)
def A004211(n): return sum(2^(n-k)*stirling_number2(n, k) for k in (0..n))
print([A004211(n) for n in range(21)]) # Peter Luschny, Apr 15 2020
CROSSREFS
Cf. A075497 (row sums).
Cf. A038207.
Cf. A000110 (RGS where s(k) <= F(k) + 1), A004212 (RGS where s(k) <= F(k) + 3), A004213 (s(k) <= F(k) + 4), A005011 (s(k) <= F(k) + 5), A005012 (s(k) <= F(k) + 6), A075506 (s(k) <= F(k) + 7), A075507 (s(k) <= F(k) + 8), A075508 (s(k) <= F(k) + 9), A075509 (s(k) <= F(k) + 10).
Main diagonal of A261275.
Sequence in context: A246985 A326521 A340813 * A180869 A357836 A356291
KEYWORD
nonn,easy,nice,eigen
STATUS
approved