Solution to Monthly Problem 11567

Adam M. Goyt Department of Mathematics Minnesota State University Moorhead Moorhead, MN 56563 goytadam@mnstate.edu

Lara K. Pudwell Department of Mathematics and Computer Science Valparaiso University Valparaiso, IN 46383 Lara.Pudwell@valpo.edu

May 14, 2011

How many arrangements $(a_1, a_2, \ldots, a_{2n})$ of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ satisfy the following two conditions: (i) All entries between the two occurrences of any given value *i* exceed *i*, and (*ii*) No three entries increase from left to right with the last two adjacent?

Theorem 0.1. The number of such arrangements is given by $\sum_{k=1}^{n} 2^{n-k} {n \\ k}$, where ${n \\ k}$ denotes the Stirling number of the second kind.

Proof. Let A_n be the set of arrangements of $\{1, 1, 2, 2, ..., n, n\}$ satisfying (i) and (ii) from the problem. We will provide a bijective proof that $|A_n| = \sum_{k=1}^n 2^{n-k} {n \\ k}$ by showing that these arrangements can be put into bijection with a set of colored set partitions which have the same enumeration.

A partition of the set $[n] = \{1, 2, ..., n\}$ is a family of pairwise disjoint subsets B_1 , B_2, \ldots, B_k of [n], whose union, $\bigcup_{i=1}^k B_i = [n]$. We refer to the subsets as blocks, and write our set partitions with the blocks in canonical order $B_1/B_2/\ldots/B_k$ with min $B_1 < \min B_2 < \cdots < \min B_k$. For example, 1378/25/46 is the partition of [7] with blocks $\{1, 3, 7, 8\}, \{2, 5\},$ and $\{4, 6\}$. We denote the set of all partitions of [n] by Π_n .

Let $\Pi_n \wr C_2$ be the set of partitions of the set [n] such that each element is colored either (r)ed or (b)lue. An example of one of these colored set partitions is $1^r 3^r 7^b 8^r / 2^r 5^r / 4^r 6^b$.

Let $P_n \subseteq \Pi_n \wr C_2$ be the set containing only those partitions whose first element in each block is colored red. Notice that this means that if a partition has k blocks then the n-kelements that are not the smallest in any block can be colored either red or blue. Since there are $\binom{n}{k}$ partitions of [n] with k blocks, there are $2^{n-k}\binom{n}{k}$ such partitions with k blocks in P_n . Summing over k shows that $|P_n| = \sum_{k=1}^n 2^{n-k} \binom{n}{k}$.

To construct a bijection between A_n and P_n , we need to understand the structure of the elements of A_n . Let $\alpha \in A_n$ and locate the two copies of *i*. By condition (i), all numbers between these two must be larger than i and by (ii) these numbers must appear in decreasing order. If j > i then both occurrences of j appear before, between or after both *i*'s. Finally if k and j are larger than a left to right minimum i and appear after i, but k and j appear before the next left-to-right minimum then k and j appear in decreasing order otherwise we violate (ii).

Let $\phi: P_n \to A_n$ be defined as follows. Suppose $\pi = B_1/B_2/\ldots/B_k$. Define $\phi(\pi) =$ $\phi(B_k)\phi(B_{k-1})\ldots\phi(B_1)$ be the arrangement constructed as follows. For any block B_i let $m_i = \min B_i$ and let $\phi(B_i) = m_i \beta_i m_i \rho_i$, where β_i is the decreasing sequence of the blue colored elements from B_i and ρ_i is the decreasing sequence of the red colored elements from B_i except m_i . For example, $\phi(1^r 3^r 7^b 8^r) = 17718833$, and $\phi(1^r 3^r 7^b 8^r / 2^r 5^r / 4^r 6^b) =$ $\phi(4^r 6^b)\phi(2^r 5^r)\phi(1^r 3^r 7^b 8^r) = 4664225517718833.$

 ϕ has an obvious inverse, and thus ϕ must be a bijection. Hence, we must have that $|A_n| = \sum_{k=1}^n 2^{n-k} \begin{Bmatrix} n \\ k \end{Bmatrix}.$