Skip to main content
ABSTRACT Chloroflexus aurantiacus is a thermotolerant anoxygenic green phototrophic bacterium that is prominent in alkaline hot springs at temperatures between 52 and 60 C. This species often grows in the hyperoxic environment beneath... more
ABSTRACT Chloroflexus aurantiacus is a thermotolerant anoxygenic green phototrophic bacterium that is prominent in alkaline hot springs at temperatures between 52 and 60 C. This species often grows in the hyperoxic environment beneath cyanobacterial mats at higher temperatures up to 70 - 72 C. Cf. aurantiacus is an evolutionarily important organism since it is in the earliest branch of the eubacteria that are capable of photosynthesis and many of its characteristics can be found in other diverse groups of phototrophic bacteria. Additional information is contained in the original extended abstract.
Will global change affect planktonic productivity? LJ Rothschild Taking a Look at California's Ocean Resources: An Agenda for the Future. 2, 1563-1575, 1998. Phytoplankton are a major source of marine primary productivity. ...
Life on Earth occupies a multidimensional niche space that has yet to be fully described. The niche space of terrestrial life is knowable, and thus, it guides the search for hypothesized life. Since terrestrial life is constrained by its... more
Life on Earth occupies a multidimensional niche space that has yet to be fully described. The niche space of terrestrial life is knowable, and thus, it guides the search for hypothesized life. Since terrestrial life is constrained by its organic carbon foundation and requirement for water as a solvent, extremes in such environmental parameters as temperature, pH, and pressure will determine the geographic range in which life can survive. Most previous studies have focused on individual environmental variables, but in fact, each niche space occupies all parameters. Thus, to not only understand the limits of life on Earth but also use these constraints as a framework for the identification of potential abodes for life elsewhere necessitates an analysis of multiple environmental parameters simultaneously. After searching the published literature, we have compiled data about mechanisms of survival at individual and multiple extremes in order to model the niche space for terrestrial life. Published data are incomplete and inconsistent for a full analysis of all extremes and their polyextremophilic combinations, so after describing the breadth of the field, we focus on the two best-documented parameters, temperature and pH, to create a two-dimensional niche space model for future analysis. We conclude by pointing out that synthetic biology has the ability to expand the limits for life on Earth and thus increase the chances of overlap between terrestrial and potential extraterrestrial biota.
Amyloid‐based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a... more
Amyloid‐based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high‐quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate‐prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well‐represen...
DNA double helices containing metal‐mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical... more
DNA double helices containing metal‐mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self‐assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X‐ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3‐dominant, centrosymmetric pairs and major groove binders driven by 5‐position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.
Biologics, such as pharmaceutical peptides, have notoriously short shelf lives, insufficient for long-duration space flight missions to the Moon or Mars. To enable the sustainable presence of humans on the Moon or Mars, we must develop... more
Biologics, such as pharmaceutical peptides, have notoriously short shelf lives, insufficient for long-duration space flight missions to the Moon or Mars. To enable the sustainable presence of humans on the Moon or Mars, we must develop methods for on-site production of pharmaceutical peptides in space, a concept we call Astropharmacy. Here, we present proof-of-concept for the first step needed: a low-mass system for pharmaceutical production designed to be stable in space. To demonstrate feasibility, we engineered strains of the space-hardy spore-forming bacterium, Bacillus subtilis, to secrete two pharmaceutical peptides important for astronaut health: teriparatide (an anabolic agent for combating osteoporosis) and filgrastim (an effective countermeasure for radiation-induced neutropenia). We found that the secretion peptides from the walM and yoqH genes of B. subtilis 168 worked well for secreting teriparatide and filgrastim, respectively. In consideration of the TRISH challenge t...
The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of... more
The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduc...
Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or... more
Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology can greatly enhance and expand life's evolved repertoire. Using natural and synthetically altered organisms as the feedstock for additive manufacturing could o...
会議情報: 平成27年度宇宙科学に関する室内実験シンポジウム (2016年2月23日-24日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)相模原キャンパス), 相模原市, 神奈川県
Planetary exploration requires a balance between preemptive planning and financial feasibility. The risk of mid-mission equipment failure, power shortages, or supply depletion incentivizes precautionary measures, but the financial strain... more
Planetary exploration requires a balance between preemptive planning and financial feasibility. The risk of mid-mission equipment failure, power shortages, or supply depletion incentivizes precautionary measures, but the financial strain of sending unnecessary mass into space limits this practice.To balance the two, our team explored the advantages of biological solutions, namely the self-sustaining abilities of low-mass organisms, to make planetary exploration more self-sufficient and economical. Prioritizing repair over replacement, we are developing self-healing materials embedded with Bacillus subtilis. For longer-lasting energy, we are designing a “biobactery” using linearly oriented Escherichia coli to generate power. For renewable materials, we are engineering bacteria to synthesize and degrade rubber. Individually, these projects offer sustainable alternatives for repair, power, and materials. But when combined, these consolidated insights can provide us with the power to ge...
The presence of perchlorate in the Martian soil may limit in-situ resource utilization (ISRU) technologies to support human outposts. In order to exploit the desiccation, radiation-tolerant cyanobacterium Chroococcidopsis in Biological... more
The presence of perchlorate in the Martian soil may limit in-situ resource utilization (ISRU) technologies to support human outposts. In order to exploit the desiccation, radiation-tolerant cyanobacterium Chroococcidopsis in Biological Life Support Systems based on ISRU, we investigated the perchlorate tolerance of Chroococcidopsis sp. CCMEE 029 and its derivative CCMEE 029 P-MRS. This strain was obtained from dried cells mixed with Martian regolith simulant and exposed to Mars-like conditions during the BIOMEX space experiment. After a 55-day exposure of up to 200 mM perchlorate ions, a tolerance threshold value of 100 mM perchlorate ions was identified for both Chroococcidopsis strains. After 40-day incubation, a Mars-relevant perchlorate concentration of 2.4 mM perchlorate ions, provided as a 60 and 40% mixture of Mg- and Ca-perchlorate, had no negative effect on the growth rate of the two strains. A proof-of-concept experiment was conducted using Chroococcidopsis lysate in ISRU ...
Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using... more
Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using a modern microbial mat as an analog for Precambrian stromatolites, a study of carbon fixation during a diurnal cycle under ambient conditions was undertaken. The rate of carbon fixation depends primarily on the availability of light (consistent with photosynthetic carbon fixation) and inorganic carbon, and not nitrogen or phosphorus. Atmospheric PCO2 is thought to have decreased from 10 bars at 4 Ga (10(9) years before present) to approximately 10(-4) bars today, implying a change in the availability of inorganic carbon for carbon fixation. Experimental manipulation of levels of inorganic carbon to levels that may have been available to Precambrian mat communities resulted in increased levels of carbon fixation during daylight hours. Combining these data with models of daylength during the Precambrian, models are derived for diurnal patterns of photosynthetic carbon fixation in a Precambrian microbial mat community. The models suggest that, even in the face of shorter daylengths during the Precambrian, total daily carbon fixation has been declining over geological time, with most of the decrease having occurred during the Precambrian.
1. Cell. 1986 Dec 5;47(5):640. Are rRNA sequence comparisons the Rosetta stone of phylogenetics? Rothschild LJ, Ragan MA, Coleman AW, Heywood P, Gerbi SA. PMID: 3779840 [PubMed - indexed for MEDLINE]. Publication Types: Letter. MeSH... more
1. Cell. 1986 Dec 5;47(5):640. Are rRNA sequence comparisons the Rosetta stone of phylogenetics? Rothschild LJ, Ragan MA, Coleman AW, Heywood P, Gerbi SA. PMID: 3779840 [PubMed - indexed for MEDLINE]. Publication Types: Letter. MeSH Terms: ...
Abstract In the Bolivian Altiplano, a number of environmental variables combine to produce some of the most exotic and poorly understood lacustrine environments on Earth. In a cold, arid environment with extreme ultraviolet flux, these... more
Abstract In the Bolivian Altiplano, a number of environmental variables combine to produce some of the most exotic and poorly understood lacustrine environments on Earth. In a cold, arid environment with extreme ultraviolet flux, these lakes provide a habitat for biology and a proxy for the study of potentially analogous martian environments. Here, we present new data on the physical, chemical environment of three such lakes at Licancabur Volcano, Bolivia and explore the quantitative basis for an analogy to Mars. Licancabur (22 50'S, 67 ...
A critical aspect of human space exploration and eventual settlement is the ability to construct habitats while minimizing payload mass launched from Earth. To respond to this challenge, we have proposed the use of fungal bio-composites... more
A critical aspect of human space exploration and eventual settlement is the ability to construct habitats while minimizing payload mass launched from Earth. To respond to this challenge, we have proposed the use of fungal bio-composites for growing extra-terrestrial structures, directly at the destination, significantly lowering the mass of structural materials transported from Earth and minimizing the need for high mass robotic operations and infrastructure preparations. Throughout human history, the construction of habitats has used biologically produced materials, from bone and skins to wood and limestone. Traditionally, the materials are used only post-mortem. Currently, the idea of working with living biological organisms, and the phenomenon of growth itself, is of increasing interest in architecture and space applications. Here, we describe the use of mycelium-based composites as an alternative, biological approach for constructing regenerative and adaptive buildings in extrem...
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the... more
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
for ASME 2017 IMECE (International Mechanical Engineering Congress & Exposition, November 2017 The technology for biology in space lags far behind the gold standard for biological experiments on Earth. To remedy this disparity, the... more
for ASME 2017 IMECE (International Mechanical Engineering Congress & Exposition, November 2017 The technology for biology in space lags far behind the gold standard for biological experiments on Earth. To remedy this disparity, the Rothschild lab works on proof of concept, prototyping, and developing of new sensors and devices to further the capabilities of biology research on satellites. One such device is the PowerCell Payload System. One goal for synthetic biology in aiding space travel and colonization is to genetically engineer living cells to produce biochemicals in space. However, such farming in space presupposes bacteria retain their functionality post-launch, bombarded by radiation, and without the 1G of Earth. Our questions is, does a co-culture of cyanobacteria and proteinsynthesizing bacteria produce Earth-like yields of target proteins? Is the yield sensitive to variable gravitational forces? To answer these questions, a PowerCell Payload System will spend 1 year aboar...
Synthetic biology the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the... more
Synthetic biology the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as bio-mining, human health and the industrial production of novel bio-composites. Beyond e...
The cyanobacterium Chroococcidiopsis contains species found in extreme environments, thus providing the opportunity to study adaptation to a range of environments within the confines of a single genus. Due to its extremophilic nature, it... more
The cyanobacterium Chroococcidiopsis contains species found in extreme environments, thus providing the opportunity to study adaptation to a range of environments within the confines of a single genus. Due to its extremophilic nature, it has attracted attention for space settlement as well as a model for life elsewhere. In this study, eight unialgal strains from diverse habitats, isolated in unialgal culture and grown in laboratory conditions, were characterized for their ability to survive a range of extreme environments including UVC (254 nm) radiation, oxidative damage, desiccation, and repeated freeze/thawing. The study revealed two previously uncharacterized saltwater isolates of Chroococcidiopsis that were more radiation resistant than most of the other isolates. Isolate CCMP 1991 from Hawaii survived up to 1750 J·m-2, and isolate CCMP 3184 from Samoa survived up to 1000 J·m-2 (254 nm UVR) compared with 250 J·m-2 for most other isolates tested. These two UV radiation-resistant...
Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a... more
Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions in order to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27,980,560 proteins scanned, 228,561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the 3 domains of life. We found that candidate prions with a possible role in adaptation were particularly well-rep...

And 161 more