Skip to main content
We investigated the activation of the Ras/ERK signaling pathway by 12-O-tetradecanoylphorbol-13-acetate (TPA) in NIH3T3 fibroblasts. Interestingly, the activation was suppressed not only by dominant negative Raf-1 but also by dominant... more
We investigated the activation of the Ras/ERK signaling pathway by 12-O-tetradecanoylphorbol-13-acetate (TPA) in NIH3T3 fibroblasts. Interestingly, the activation was suppressed not only by dominant negative Raf-1 but also by dominant negative Ras and SOS. Further analysis revealed that TPA treatment induced, dependently on protein kinase C, the mobility shift of p66(shc) in SDS-polyacrylamide gel electrophoresis, which could be prevented by treatment of the Shc immunoprecipitate with serine/threonine-specific protein phosphatase 1 (PP1) or 2A (PP2A). Phosphoamino acid analysis of Shc showed that unlike growth factor-induced Shc phosphorylation, where Shc is mainly phosphorylated at tyrosine residues, TPA-induced phosphorylation was only at serine residues. Like growth factor-induced Shc phosphorylation, which leads to the association of Shc with Grb2, TPA also induced this association, but, correspondingly to the above results, the TPA-induced association was disrupted by in vitro treatment of the Shc immunoprecipitate with PP1. Taken together, these results suggest that the TPA signal was fed at or upstream of Shc to activate the Ras/ERK signaling pathway involving serine phosphorylation of Shc.
We have previously shown in NIH 3T3 fibroblasts that treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) or fibroblast growth factor-2 (FGF-2) activates the Ras/Erk signaling pathway in NIH 3T3 fibroblasts, leading to the induction... more
We have previously shown in NIH 3T3 fibroblasts that treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) or fibroblast growth factor-2 (FGF-2) activates the Ras/Erk signaling pathway in NIH 3T3 fibroblasts, leading to the induction of the urokinase-type plasminogen activator (uPA) gene. In this study, we characterize cis-acting elements involved in this induction. DNase I hypersensitive (HS) site analysis of the uPA promoter showed that two regions were enhanced after TPA and FGF-2 treatment. One was located 2.4kb upstream of the transcription start site (-2.4kb), where a known PEA3/AP1 (AGGAAATGAGGTCAT) element is located. The other was located in a previously undefined far upstream region. Sequencing of this region revealed a similar AP1/PEA3 (GTGATTCACTTCCT) element at -6.9 kb corresponding to the HS site. Deletion analysis of the uPA promoter in transient transfection assays showed that both PEA3/AP1 elements are required for full inducibility, suggesting a synergism between the two elements. When the two sites were inserted together upstream of a minimal promoter derived from the thymidine kinase gene, expression of the reporter gene was more strongly induced by TPA and FGF-2 than with either of the two elements alone. Alone, the -6.9 element was more potent than the -2.4 element. The involvement of AP1 as well as Ets transcription factors was confirmed by examining different promoter constructs containing deletions in either the AP-1 or the PEA3 element, and by using an expression plasmid for dominant negative Ets-2. Electromobility shift analyses using specific antibodies showed that c-Jun and, JunD bind to both elements with or without induction. In addition, ATF-2 binds to the -2.4-kb element even without induction and c-Fos to the -6.9-kb element only after induction. Accordingly, overexpression of c-Fos caused induction from the -6.9-kb element, but reduced induction from the -2.4-kb element. The involvement of the Ets-2 transcription factor was shown by using expression plasmids for wild-type and dominant negative Ets-2.
The receptor tyrosine kinase Eyk, a member of the Axl/Tyro3 subfamily, activates the STAT pathway and transforms cells when constitutively activated. Here, we compared the potentials of the intracellular domains of Eyk molecules derived... more
The receptor tyrosine kinase Eyk, a member of the Axl/Tyro3 subfamily, activates the STAT pathway and transforms cells when constitutively activated. Here, we compared the potentials of the intracellular domains of Eyk molecules derived from c-Eyk and v-Eyk to transform rat 3Y1 fibroblasts. The v-Eyk molecule induced higher numbers of transformants in soft agar and stronger activation of Stat3; levels of Stat1 activation by the two Eyk molecules were similar. A mutation in the sequence Y933VPL, present in c-Eyk, to the v-Eyk sequence Y933VPQ led to increased activation of Stat3 and increased transformation efficiency. However, altering another sequence, Y862VNT, present in both Eyk molecules to F862VNT markedly decreased transformation without impairing Stat3 activation. These results indicate that activation of Stat3 enhances transformation efficiency and cooperates with another pathway to induce transformation.