Skip to main content
The discovery of human remains from the Lauricocha cave in the Central Andean highlands in the 1960's provided the first direct evidence for human presence in the high altitude Andes. The skeletons found at this site were ascribed to... more
The discovery of human remains from the Lauricocha cave in the Central Andean highlands in the 1960's provided the first direct evidence for human presence in the high altitude Andes. The skeletons found at this site were ascribed to the Early to Middle Holocene and represented the oldest known population of Western South America, and thus were used in several studies addressing the early population history of the continent. However, later excavations at Lauricocha led to doubts regarding the antiquity of the site. Here, we provide new dating, craniometric, and genetic evidence for this iconic site. We obtained new radiocarbon dates, generated complete mitochondrial genomes and nuclear SNP data from five individuals, and re-analyzed the human remains of Lauricocha to revise the initial morphological and craniometric analysis conducted in the 1960's. We show that Lauricocha was indeed occupied in the Early to Middle Holocene but the temporal spread of dates we obtained from t...
AUTHORS: Wolfgang Haak, Iosif Lazaridis, Nick Patterson, Nadin Rohland, Swapan Mallick, Bastien Llamas, Guido Brandt, Susanne Nordenfelt, Eadaoin Harney, Kristin Stewardson, Qiaomei Fu, Alissa Mittnik, Eszter Ba´nffy, Christos Economou,... more
AUTHORS: Wolfgang Haak, Iosif Lazaridis, Nick Patterson, Nadin Rohland, Swapan Mallick, Bastien Llamas, Guido Brandt, Susanne Nordenfelt, Eadaoin Harney, Kristin Stewardson, Qiaomei Fu, Alissa Mittnik, Eszter Ba´nffy, Christos Economou, Michael Francken, Susanne Friederich, Rafael Garrido Pena, Fredrik Hallgren, Valery Khartanovich, Aleksandr Khokhlov, Michael Kunst, Pavel Kuznetsov, Harald Meller, Oleg Mochalov, Vayacheslav Moiseyev, Nicole Nicklisch, Sandra L. Pichler, Roberto Risch, Manuel A. Rojo Guerra, Christina Roth, Anna Sze´cse´nyi-Nagy, Joachim Wahl, Matthias Meyer, Johannes Krause, Dorcas Brown, David Anthony, Alan Cooper, Kurt Werner Alt, David Reich
ABSTRACT
We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far EasternEurope followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe, ~8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ~24,000-year-old Siberian. By  ~6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ~75% of their ancestry to the Yamnaya,documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ~3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe
Research Interests:
We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required... more
We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations ofWestern and Far Eastern Europe followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe, 8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers,whereas Russiawas inhabited by a distinctive population of hunter-gathererswith high affinity to a 24,000-year-old Siberian. By 6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European
hunter-gatherers, but also from a population of Near Eastern ancestry.
Western and Eastern Europe came into contact 4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced 75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery.
This steppe ancestry persisted in all sampled central Europeans until at least 3,000 years ago, and is ubiquitous in present-day Europeans.
These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.
In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit... more
In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.
The discovery of human remains from the Lauricocha cave in the Central Andean highlands in the 1960's provided the first direct evidence for human presence in the high altitude Andes. The skeletons found at this site were ascribed to... more
The discovery of human remains from the Lauricocha cave in the Central Andean highlands in the 1960's provided the first direct evidence for human presence in the high altitude Andes. The skeletons found at this site were ascribed to the Early to Middle Holocene and represented the oldest known population of Western South America, and thus were used in several studies addressing the early population history of the continent. However, later excavations at Lauricocha led to doubts regarding the antiquity of the site. Here, we provide new dating, craniometric, and genetic evidence for this iconic site. We obtained new radiocarbon dates, generated complete mitochondrial genomes and nuclear SNP data from five individuals, and re-analyzed the human remains of Lauricocha to revise the initial morphological and craniometric analysis conducted in the 1960's. We show that Lauricocha was indeed occupied in the Early to Middle Holocene but the temporal spread of dates we obtained from t...
The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the... more
The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetec...