[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Quantum Image Edge Extraction Based on Improved Sobel Operator

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Edge extraction is a basic task in image processing. This paper proposes a quantum image edge extraction algorithm based on improved sobel operator for the generalized quantum image representation (GQIR) to solve the real-time problem. The quantum image model of GQIR can store arbitrary quantum images with a size of H × W. Our scheme can calculate the gradients of image intensity of all the pixels simultaneously. Then, the concrete circuits of quantum image edge extraction algorithm are implemented by using a series of quantum operators which have been designed. Compared with existing quantum edge extraction algorithms, our scheme can achieve more accurate edge extraction, especially for diagonal edges. Finally, the complexity of the quantum circuits were been analyzed based on the basic quantum gates and give the simulation experiment results on classical computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Comput. Soc. Press (1994)

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC ‘96, pp. 212–219. ACM Press, New York, New York, USA (1996)

    Google Scholar 

  4. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Donkor, E., Pirich, A.R., Brandt, H.E. (eds.) Quantum Information & Computation, p. 137 (2003)

    Chapter  Google Scholar 

  5. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010). https://doi.org/10.1007/s11128-009-0123-z

    Article  MathSciNet  Google Scholar 

  6. Latorre, J.I.: Image compression and entanglement. arXiv Prepr. quant-ph/0510031. (2005)

    Google Scholar 

  7. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011). https://doi.org/10.1007/s11128-010-0177-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013). https://doi.org/10.1007/s11128-013-0567-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014). https://doi.org/10.1007/s11128-013-0705-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015). https://doi.org/10.1007/s11128-014-0841-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015). https://doi.org/10.1007/s11128-015-1099-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Duan, R., Li, Q., Li, Y.: Summary of image edge detection [J]. Opt. Tech. 3, 415–419 (2005)

    Google Scholar 

  13. Sobel, I.: Doctoral Thesis: Camera Models and Machine Perception, (1970)

    Google Scholar 

  14. Prewitt, J.M.S.: Object enhancement and extraction. Pict. Process. Psychopictorics. (1970). https://doi.org/10.1515/JLT.2009.018, /December/2009

  15. Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4, 315–328 (1971). https://doi.org/10.1016/0010-4809(71)90034-6

    Article  Google Scholar 

  16. Fu, X., Ding, M., Sun, Y., Chen, S.: A new quantum edge detection algorithm for medical images. In: Liu, J., Doi, K., Fenster, A., Chan, S.C. (eds.) IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 749724 (2009)

    Google Scholar 

  17. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58, 1–13 (2015). https://doi.org/10.1007/s11432-014-5158-9

    Article  MATH  Google Scholar 

  18. Fan, P., Zhou, R.-G., Hu, W.W., Jing, N.: Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf. Process. 18, 27 (2019). https://doi.org/10.1007/s11128-018-2129-x

    Article  ADS  MATH  Google Scholar 

  19. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8, 208–213 (2009). https://doi.org/10.3923/itj.2009.208.213

    Article  Google Scholar 

  20. Thapliyal, H., Ranganathan, N.: Design of Efficient Reversible Binary Subtractors Based on a new reversible gate. In: 2009 IEEE Computer Society Annual Symposium on VLSI. Pp. 229–234. IEEE (2009)

    Google Scholar 

  21. Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: 2011 11th IEEE International Conference on Nanotechnology, pp. 1430–1435. IEEE (2011)

  22. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40, 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Oliveira, D.S., Ramos, R.V.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7, 17–26 (2007)

    Google Scholar 

  24. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  ADS  Google Scholar 

  25. Fu, X., Ding, M., Sun, Y., Chen, S.: A new quantum edge detection algorithm for medical images. In: Liu, J., Doi, K., Fenster, A., Chan, S.C. (eds.) Proceedings of SPIE - the International Society for Optical Engineering, p. 749724 (2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Plan under Grant No. 2018YFC1200200 and 2018YFC1200205, National Natural Science Foundation of China under Grant No. 61463016 and “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Qian Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, RG., Liu, DQ. Quantum Image Edge Extraction Based on Improved Sobel Operator. Int J Theor Phys 58, 2969–2985 (2019). https://doi.org/10.1007/s10773-019-04177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04177-6

Keywords