[go: up one dir, main page]

Skip to main content
Log in

Negative mass in general relativity

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Mechanics is considered in a universe containing negative mass. Demanding (i) conservation of momentum, (ii) principle of equivalence, (iii) no runaway motions, (iv) no Schwarzschild black holes, and (v) the inertial and active gravitational masses of a body shall have the same sign, we find thatall mass must be negative. Some properties of such a universe are investigated. We show that a neutral spherical body of arbitrarily small size is possible, and observers external to it can communicate with each other by light rays without horizon problems. There are no cosmological models with a power-law big bang, and there is an abundance of nonsingular models. Like electric charges would attract each other, and unlike ones would repel. This could produce stars and galaxies held together by charge and not gravity. The investigation does not suggest any reason why mass in the real universe should be positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jammer, M. (1961).Concepts of Mass (Harvard University Press, Cambridge, Massachusetts), Ch. 10.

    Google Scholar 

  2. Bondi, H. (1957).Rev. Mod. Phys.,29, 423.

    Google Scholar 

  3. Morrison, P. (1958).American J. Phys.,26, 358.

    Google Scholar 

  4. Matz, and Kaempffer (1958).Bull. American Phys. Soc, b, 317.

    Google Scholar 

  5. Shiff, L. I. (1959).Proc. Nat. Acad. Sci.,45, 69.

    Google Scholar 

  6. de Beauregard, C. (1961).Comptes Rendus,252, 1737.

    Google Scholar 

  7. Winterberg, (1961).Nuovo Cimento,19, 186.

    Google Scholar 

  8. Hoffmann, B. (1965).International Conference on Relativistic Theories of Gravitation (King's College, London), Vol. 2.

    Google Scholar 

  9. Terletsky, Ya. P. (1965).International Conference on Relativistic Theories of Gravitation (King's College, London), Vol. 2.

    Google Scholar 

  10. Inomata, A., and Peak, D. (1969).Nuovo Cimento,63, 132.

    Google Scholar 

  11. McCrea, W. H. (1964).Astrophysica Norvegica,9, 89.

    Google Scholar 

  12. Terletsky, Ya. P. (1986).Paradoxes in the Theory of Relativity (Plenum, New York), Ch.6.

    Google Scholar 

  13. de Martins, R. A. (1980).Lett. Nuovo Cimento,28, 265.

    Google Scholar 

  14. Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, H. (1980).Exact Solutions of Einstein's Field Equations (Deutscher Verlag der Wissenschaften, Berlin), p. 135.

    Google Scholar 

  15. Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, H. (1980).Exact Solutions of Einstein's Field Equations (Deutscher Verlag der Wisenschaften, Berlin), p. 119.

    Google Scholar 

  16. Bonnor, W. B., and Swaminarayan, N. S. (1964).Z. Phys.,117, 240.

    Google Scholar 

  17. Bičák, J. (1968).Proc. Roy. Soc.,A302, 201.

    Google Scholar 

  18. Bičák, J., Hoenselaers, C., and Schmidt, B. G. (1983).Proc. Roy. Soc,A390, 397; 411.

    Google Scholar 

  19. Fock, V. (1959).The Theory of Space-Time and Gravitation (Pergamon, London), Ch. 6.

    Google Scholar 

  20. Damour, T. (1987).The Problem of Motion in Newtonian and Einsteinian Gravity. In300 Years of Gravitation, Hawking, S. W., and Israel, W., eds. (Cambridge University Press).

  21. Whittaker, E. T. (1935).Proc. Roy. Soc.,A149, 384.

    Google Scholar 

  22. Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press), p. 246.

  23. Whittaker, J. M. (1968).Proc. Roy. Soc,A308, 1.

    Google Scholar 

  24. Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press), p. 206.

  25. Forward, R. L. (1988). Negative matter propulsion (preprint).

  26. Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press), p. 265.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnor, W.B. Negative mass in general relativity. Gen Relat Gravit 21, 1143–1157 (1989). https://doi.org/10.1007/BF00763458

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763458

Keywords

Navigation