[go: up one dir, main page]

Skip to main content

A Commitment-Consistent Proof of a Shuffle

  • Conference paper
Information Security and Privacy (ACISP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5594))

Included in the following conference series:

Abstract

We introduce a pre-computation technique that drastically reduces the online computational complexity of mix-nets based on homomorphic cryptosystems.

More precisely, we show that there is a permutation commitment scheme that allows a mix-server to: (1) commit to a permutation and efficiently prove knowledge of doing so correctly in the offline phase, and (2) shuffle its input and give an extremely efficient commitment-consistent proof of a shuffle in the online phase.

We prove our result for a general class of shuffle maps that generalize all known types of shuffles, and even allows shuffling ciphertexts of different cryptosystems in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Imai, H.: Flaws in some robust optimistic mix-nets. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 39–50. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Adida, B., Wikström, D.: Offline/online mixing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484–495. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryptography and checking. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 170–191. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: 26th ACM Symposium on the Theory of Computing (STOC), pp. 544–553. ACM Press, New York (1994)

    Google Scholar 

  6. Chaum, D.: Untraceable electronic mail, return addresses and digital pseudo-nyms. Communications of the ACM 24(2), 84–88 (1981)

    Article  Google Scholar 

  7. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  8. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Desmedt, Y., Kurosawa, K.: How to break a practical MIX and design a new one. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 427–438. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  11. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Furukawa, J., Miyauchi, H., Mori, K., Obana, S., Sako, K.: An implementation of a universally verifiable electronic voting scheme based on shuffling. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 16–30. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  15. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Jakobsson, M., Juels, A., Rivest, R.: Making mix nets robust for electronic voting by randomized partial checking. In: 11th USENIX Security Symposium, pp. 339–353. USENIX (2002)

    Google Scholar 

  17. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  18. Neff, A.: A verifiable secret shuffle and its application to e-voting. In: 8th ACM Conference on Computer and Communications Security (CCS), pp. 116–125. ACM Press, New York (2001)

    Google Scholar 

  19. Neff, A.: Private communication (May 2008)

    Google Scholar 

  20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  22. Pfitzmann, B.: Breaking an efficient anonymous channel. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 332–340. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Sako, K., Killian, J.: Reciept-free mix-type voting scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  24. Wikström, D.: Five practical attacks for “optimistic mixing for exit-polls”. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 160–174. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 315–335. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Wikström, D.: Simplified submission of inputs to protocols. Cryptology ePrint Archive, Report 2006/259 (2006), http://eprint.iacr.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wikström, D. (2009). A Commitment-Consistent Proof of a Shuffle. In: Boyd, C., González Nieto, J. (eds) Information Security and Privacy. ACISP 2009. Lecture Notes in Computer Science, vol 5594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02620-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02620-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02619-5

  • Online ISBN: 978-3-642-02620-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics