Abstract
Multi-Key Homomorphic Signatures (MKHS) allow one to evaluate a function on data signed by distinct users while producing a succinct and publicly-verifiable certificate of the correctness of the result. All the constructions of MKHS in the state of the art achieve a weak level of succinctness where signatures are succinct in the total number of inputs but grow linearly with the number of users involved in the computation. The only exception is a SNARK-based construction which relies on a strong notion of knowledge soundness in the presence of signing oracles that not only requires non-falsifiable assumptions but also encounters some impossibility results.
In this work, we present the first construction of MKHS that are fully succinct (also with respect to the number of users) while achieving adaptive security under standard falsifiable assumptions. Our result is achieved through a novel combination of batch arguments for NP (BARGs) and functional commitments (FC), and yields diverse MKHS instantiations for circuits of unbounded depth based on either pairing or lattice assumptions. Additionally, our schemes support efficient verification with pre-processing, and they can easily be extended to achieve multi-hop evaluation and context-hiding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
HS may incorporate additional useful properties, such as amortized efficiency (enabling verification in time independent of the complexity of f, after preprocessing) and context-hiding (preventing the verifier to learn information on the inputs beyond the computation’s output); see Sect. 3 for more details.
- 2.
The term \(\textsf{poly}(\lambda , m)\) appears since the \(\textsf{EffVer}\) algorithm needs to at least read the output \(\boldsymbol{y}\), that has length m.
- 3.
We note that in some algebraic schemes, only the section of \(\textsf{aux}\) corresponding to the set S may be needed.
- 4.
Though not formalized, this is the same notion used in the MKHS scheme of [17].
- 5.
Precisely, we can build a CFC supporting a single input commitment; this is however enough in our application of composable MKHS.
- 6.
In the same works, SECs are constructed from the same assumptions as a building block for BARGs.
References
Aranha, D.F., Pagnin, E.: The simplest multi-key linearly homomorphic signature scheme. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 280–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_14
Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_2
Balbás, D., Catalano, D., Fiore, D., Lai, R.W.F.: Chainable functional commitments for unbounded-depth circuits. In: Rothblum, G., Wee, H. (eds.) Theory of Cryptography. TCC 2023. Lecture Notes in Computer Science, vol. 14371. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48621-0_13
Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_5
Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_10
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 680–699. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_38
Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_13
Catalano, D., Fiore, D., Tucker, I.: Additive-homomorphic functional commitments and applications to homomorphic signatures. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 159–188. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22972-5_6
Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_40
Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_21
Choudhuri, A.R., Garg, S., Jain, A., Jin, Z., Zhang, J.: Correlation intractability and SNARGs from sub-exponential DDH. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023, Part IV. LNCS, vol. 14084, pp. 635–668. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_20
Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive Batch arguments for NP from standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 394–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_14
Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for \(\cal{P}\) from LWE. In: 62nd FOCS, pp. 68–79. IEEE Computer Society Press (2022). https://doi.org/10.1109/FOCS52979.2021.00016
Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW (1993)
Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_17
Fiore, D., Nitulescu, A.: On the (In)security of SNARKs in the presence of oracles. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_5
Fiore, D., Pagnin, E.: Matrioska: a compiler for multi-key homomorphic signatures. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 43–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_3
Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_41
Gay, R., Ursu, B.: On Instantiating unleveled fully-homomorphic signatures from falsifiable assumptions. In: International Conference on Public Key Cryptography - PKC 2024 (2024), to appear
Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_9
Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_16
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009). https://doi.org/10.1145/1536414.1536440
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press (2011). https://doi.org/10.1145/1993636.1993651
González, A., Zacharakis, A.: Fully-succinct publicly verifiable delegation from constant-size assumptions. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 529–557. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_18
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 469–477. ACM Press (2015). https://doi.org/10.1145/2746539.2746576
Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Roughgarden, T. (ed.) ITCS 2015, pp. 163–172. ACM (2015). https://doi.org/10.1145/2688073.2688105
Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_17
Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch arguments and ram delegation. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pp. 1545–1552. STOC 2023, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3564246.3585200
Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC, pp. 1115–1124. ACM Press (2019). https://doi.org/10.1145/3313276.3316411
Kalai, Y.T., Vaikuntanathan, V., Zhang, R.Y.: Somewhere statistical soundness, post-quantum security, and SNARGs. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 330–368. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_12
Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated verifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 622–651. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_22
Lai, R.W.F., Tai, R.K.H., Wong, H.W.H., Chow, S.S.M.: Multi-key homomorphic signatures unforgeable under insider corruption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 465–492. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_16
Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_17
Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.30
Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_6
Samarin, S.D., Fiore, D., Venturi, D., Amini, M.: A compiler for multi-key homomorphic signatures for turing machines. Theor. Comput. Sci. 889, 145–170 (2021). https://doi.org/10.1016/j.tcs.2021.08.002
Schabhüser, L., Butin, D., Buchmann, J.: Context hiding multi-key linearly homomorphic authenticators. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 493–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_25
Waters, B., Wu, D.J.: Batch arguments for NP and more from standard bilinear group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 433–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_15
Wee, H., Wu, D.J.: Lattice-based functional commitments: Fast verification and cryptanalysis. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part V. LNCS, vol. 14442, pp. 201–235. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8733-7_7
Wee, H., Wu, D.J.: Succinct Functional Commitments for Circuits from k-Lin. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. LNCS, pp. 280–310. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-58723-8_10
Acknowledgements
This work is supported by the PICOCRYPT project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 101001283), partially supported by projects PRODIGY (TED2021-132464B-I00) and ESPADA (PID2022-142290OB-I00) funded by MCIN/AEI/10.13039/501100011033/ and the European Union NextGenerationEU / PRTR, and partially funded by Ministerio de Universidades (FPU21/00600).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Anthoine, G., Balbás, D., Fiore, D. (2024). Fully-Succinct Multi-key Homomorphic Signatures from Standard Assumptions. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14922. Springer, Cham. https://doi.org/10.1007/978-3-031-68382-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-68382-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68381-7
Online ISBN: 978-3-031-68382-4
eBook Packages: Computer ScienceComputer Science (R0)