[go: up one dir, main page]

Skip to main content
Log in

Integral Representation of the Mittag-Leffler Function

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we obtain a generalization of the integral representation of the gamma function, which shows that the Hankel contour allows the rotation in the complex plane. The range of allowable values for the rotation angle of the contour is set. Using this integral representation, we obtain a generalization of the integral representation of the Mittag-Leffler function that expresses the value of this function through the contour integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Mittag-Leffler, “Sur la représentation analytique d’une branche uniforme d’une fonction monogène: Premiére note,” Acta Math. 23, 43–62 (1900). https://doi.org/10.1007/BF02418669

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Mittag-Leffler, “Sur la représentation analytique d’une branche uniforme d’une fonction monogène: Seconde note,” Acta Math. 24, 183–204 (1901). https://doi.org/10.1007/BF02403072

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Mittag-Leffler, “Sur la représentation analytique d’une branche uniforme d’une fonction monogène: Troisième note,” Acta Math. 24, 205–244 (1901). https://doi.org/10.1007/BF02403073

    Article  MathSciNet  Google Scholar 

  4. G. Mittag-Leffler, “Sur la représentation analytique d’une branche uniforme d’une fonction monogène: Quatrième note,” Acta Math. 26, 353–391 (1902). https://doi.org/10.1007/BF02415502

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Mittag-Leffler, “Sur la représentation analytique d’une branche uniforme d’une fonction monogène: Cinquième note,” Acta Math. 29, 101–181 (1905). https://doi.org/10.1007/BF02403200

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Mittag-Leffler, “Sur la répresentation analytique d’une branche uniforme d’une fonction monogène: Sixième note,” Acta Math. 42, 285–308 (1920). https://doi.org/10.1007/BF02404411

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Wiman, “Über den Fundamentalsatz in der Teorie der Funktionen E a(x),” Acta Math. 29, 191–201 (1905). https://doi.org/10.1007/BF02403202

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Wiman, “Über die Nullstellen der Funktionen E a(x),” Acta Math. 29, 217–234 (1905). https://doi.org/10.1007/BF02403204

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Humbert and R. P. Agarwal, “Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations,” Bull. Sci. Math., Sér. II. 77, 180–185 (1953).

    MATH  Google Scholar 

  10. P. Humbert, “Quelques résultats rélatifs à la fonction de Mittag-Leffler,” C. R. Acad. Sci. Paris 236, 1467–1468 (1953).

    MathSciNet  MATH  Google Scholar 

  11. R. P. Agarwal, “A propos d’une note de M. Pierre Humbert,” C. R. Acad. Sci. Paris 236, 2031–2032 (1953).

    MathSciNet  MATH  Google Scholar 

  12. M. M. Dzhrbashyan, “On the asymptotic behavior of a function of Mittag-Leffler type,” Dokl. Akad. Nauk Arm. SSR 19 (3), 65–72 (1954).

    MathSciNet  Google Scholar 

  13. M. M. Dzhrbashyan, “On the integral representation of functions continuous on several rays (generalization of the Fourier integral),” Izv. Akad. Nauk SSSR. Ser. Mat. 18 (5), 427–448 (1954).

    Google Scholar 

  14. M. M. Dzhrbashyan, Integral Transformations and Representations of Functions in the Complex Domain (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  15. V. V. Uchaikin and R. T. Sibatov, “Statistical model of fluorescence blinking,” J. Exp. Theor. Phys. 109 (4), 537–546 (2009). https://doi.org/10.1134/S106377610910001X

    Article  Google Scholar 

  16. V. V. Uchaikin, D. O. Cahoy, and R. T. Sibatov, “Fractional processes: from Poisson to branching one,” Int. J. Bifurcation Chaos 18 (09), 2717–2725 (2008). https://doi.org/10.1142/S0218127408021932

    Article  MathSciNet  MATH  Google Scholar 

  17. D. O. Cahoy, V. V. Uchaikin, and W. A. Woyczynski, “Parameter estimation for fractional Poisson processes,” J. Stat. Plann. Inference 140 (11), 3106–3120 (2010). https://doi.org/10.1016/j.jspi.2010.04.016

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Yu. Korolev and A. I. Zeifman, “Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations,” J. Korean Stat. Soc. 46 (2), 161–181 (2017). https://doi.org/10.1016/j.jkss.2016.07.001

    Article  MathSciNet  MATH  Google Scholar 

  19. V. E. Bening, V. Yu. Korolev, T. A. Sukhorukova, G. G. Gusarov, V. V. Saenko, V. V. Uchaikin, and V. N. Kolokoltsov, “Fractionally stable distributions,” in Stochastic Models of Structural Plasma Turbulence (De Gruyeter, Berlin, 2012), pp. 175–244. https://doi.org/10.1515/9783110936032.175

  20. V. V. Saenko, “Integral representation of the fractional stable density,” J. Math. Sci. 248 (1), 51–66 (2020). https://doi.org/10.1007/s10958-020-04855-5

    Article  MathSciNet  Google Scholar 

  21. H. Bateman, Higher Transcendental Functions, Vol. 3 (McGraw-Hill, New York, 1955).

    Google Scholar 

  22. R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics (Springer, Berlin, 2014). https://doi.org/10.1007/978-3-662-43930-2

  23. K. Diethelm, “Mittag-Leffler function,” in The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics 2004 (Springer, Berlin, 2010), pp. 67–73. https://doi.org/10.1007/978-3-642-14574-2_4

  24. A. M. Mathai and H. J. Haubold, “Mittag-Leffler functions and fractional calculus,” in Special Functions for Applied Scientists (Springer, New York, 2008), pp. 79–134. https://doi.org/10.1007/978-0-387-75894-7_2

    Book  MATH  Google Scholar 

  25. R. Gorenflo, F. Mainardi, and S. Rogosin, “Mittag-Leffler function: properties and applications,” in Handbook of Fractional Calculus with Applications, Vol. 1: Basic Theory, Ed. by A. Kochubei and Yu. Luchko (De Gruyter, Berlin, 2019), pp. 269–296. https://doi.org/10.1515/9783110571622-011

  26. A. Yu. Popov and A. M. Sedletskii, “ Distribution of roots of Mittag-Leffler functions,” J. Math. Sci. 190 (2), 209–409 (2013). https://doi.org/10.1007/s10958-013-1255-3

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Rogosin, “The role of the Mittag-Leffler function in fractional modeling,” Math. 3 (2), 368–381 (2015). https://doi.org/10.3390/math3020368

    Article  MATH  Google Scholar 

  28. R. Gorenflo, J. Loutchko, and Yu. Luchko, “Computation of the Mittag-Leffler function E α, β(z) and its derivative,” Fract. Calc. Appl. Anal. 5 (4), 491–518 (2002).

    MathSciNet  MATH  Google Scholar 

  29. H. Seybold and R. Hilfer, “Numerical algorithm for calculating the generalized Mittag-Leffler function,” SIAM J. Numer. Anal. 47 (1), 69–88 (2009). https://doi.org/10.1137/070700280

    Article  MathSciNet  MATH  Google Scholar 

  30. H. J. Haubold, A. M. Mathai, R. K. Saxena, “Mittag-Leffler functions and their applications,” J. Appl. Math. 2011, 298628, 1–51 (2011). https://doi.org/10.1155/2011/298628

    Article  MathSciNet  MATH  Google Scholar 

  31. R. I. Parovik, “Features of calculating the Mittag-Leffler function in the Maple computer mathematics system,” Vestn. KRAUNTs. Fiz.-Mat. Nauki, No. 2 (5), 51–61 (2012). https://doi.org/10.18454/2079-6641-2012-5-2-51-61

  32. A. I. Markushevich, Theory of Analytic Functions. Vol. II: Further Construction of the Theory, 2nd ed. (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  33. V. Saenko, “Two forms of the integral representations of the Mittag-Leffler function,” Math. 8 (7), 1101, 1–35 (2020). https://doi.org/10.3390/math8071101

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant nos. 19-44-730005 and 20-07-00655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Saenko.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Ivanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenko, V.V. Integral Representation of the Mittag-Leffler Function. Russ Math. 66, 43–58 (2022). https://doi.org/10.3103/S1066369X22040053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X22040053

Keywords:

Navigation