Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Agarwal, R. P. (1953). A Propos d’une note de M. Pierre Humbert, C. R. Acad. Sci. Paris, 296, 2031–2032.
Agarwal, R. P. (1963). Generalized Hypergeometric Series, Asia Publishing House, Bombay, London and New York.
Caputo, M. (1969). Elasticitá e Dissipazione, Zanichelli, Bologna.
Dzherbashyan, M.M. (1966). Integral Transforms and Representation of Functions in Complex Domain (in Russian), Nauka, Moscow.
Erdélyi, A. (1950-51). On some functional transformations, Univ. Politec. Torino, Rend. Sem. Mat. 10, 217–234.
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953). Higher Transcendental Functions, Vol. 1, McGraw - Hill, New York, Toronto and London.
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954). Tables of Integral Transforms, Vol. 1, McGraw - Hill, New York, Toronto and London.
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954a). Tables of Integral Transforms, Vol. 2, McGraw - Hill, New York, Toronto and London.
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1955). Higher Transcendental Functions, Vol. 3, McGraw - Hill, New York, Toronto and London.
Fox, C. (1963). Integral transforms based upon fractional integration, Proc. Cambridge Philos. Soc., 59, 63–71.
Haubold, H. J. and Mathai, A. M. (2000). The fractional kinetic equation and thermonuc1ear functions, Astrophysics and Space Science, 273, 53–63.
Hilfer, R. (Ed.). (2000). Applications of Fractional Calculus in Physics, World Scientific, Singapore.
Kalla, S. L. and Saxena, R. K. (1969). Integral operators involving hypergeometric functions, Math. Zeitschr., 108, 231–234.
Kilbas. A. A. and Saigo, M. (1998). Fractional calculus of the H-function, Fukuoka Univ. Science Reports, 28, 41–51.
Kilbas, A. A. and Saigo, M. (1996). On Mittag- Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transforms and Special Functions, 4, 355–370.
Kilbas, A. A, Saigo, M. and Saxena, R. K. (2002). Solution of Volterra integrodifferential equations with generalized Mittag-Leffler function in the kernels, J. Integral Equations and Applications, 14, 377–396.
Kilbas, A. A., Saigo, M. and Saxena, R. K. (2004). Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms and Special Functions, 15, 31–49.
Kober, H. (1940). On fractional integrals and derivatives, Quart. J. Math. Oxford, Ser. ll, 193–211.
Love, E. R (1967). Some integral equations involving hypergeometric functions,Proc. Edin. Math. Soc., 15(2), 169–198.
Mathai, A. M. and Saxena, R. K. (1973). Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Mathematics, 348, Springer- Verlag, Berlin, Heidelberg.
Mathai, A. M. and Saxena, R. K. (1978). The H-function with Applications in Statistics and Other Disciplines, John Wiley and Sons, New York - London - Sydney.
Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.
Mittag-Leffler, G. M. (1903). Sur la nouvelle fonction E α(x), C. R. Acad. Sci. Paris, (Ser. II) 137, 554–558.
Oldham, K. B. and Spanier, J. (1974). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York.
Podlubny, 1. (1999). Fractional Differential Equations, Academic Press, San Diego.
Podlubny, 1. (2002). Geometric and physical interpretations of fractional integration and fractional differentiation, Frac. Calc. Appl. Anal., 5(4), 367–386.
Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag- Leffler function in the kernel,Yokohama Math. J., 19, 7–15.
Ross, B. (1994). A formula for the fractional integration and differentiation of (a + b x)c, J. Fract. Calc., 5, 87–89.
Saigo, M. (1978). A remark on integral operators involving the Gauss hypergeometric function,Math. Reports of College of Gen. Edu., Kyushu University, 11, 135–143.
Saigo, M. and Raina, R. K. (1988). Fractional calculus operators associated with a general class of polynomials, Fukuoka Univ. Science Reports, 18, 15–22.
Samko, S. G., Kilbas, A. A. and Marichev, 0. 1. (1993). Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Reading.
Saxena, R. K. (1967). On fractional integration operators, Math. Zeitsch., 96, 288–291.
Saxena, R. K. (2002). Certain properties of generalized Mittag-Leffler function, Proceedings of the Third Annual Conference of the Society for Special Functions and Their Applications, Varanasi, March 4-6, 75–81.
Saxena, R. K. (2003). Alternative derivation of the solution of certain integro-differential equations of Volterra-type, Ganita Sandesh, 17(1), 51–56.
Saxena,R. K. (2004). On a unified fractional generalization of free electron laser equation, Vijnana Parishad Anusandhan Patrika, 47(l), 17–27.
Saxena, R. K. and Kumbhat, R. K. (1973). A generalization of Kober operators, Vijnana Parishad Anusandhan Patrika, 16, 31–36.
Saxena, R. K. and Kumbhat, R. K. (1974). Integral operators involving H-function, Indian J. Pure appl. Math., 5, 1–6.
Saxena, R. K. and Kumbhat, R. K. (1975). Some properties of generalized Kober operators, Vijnana Parishad Anusandhan Patrika, 18, 139–150.
Saxena, R. K, Mathai, A. M and Haubold, H. J. (2002). On fractional kinetic equations, Astrophysics and Space Science, 282, 281–287.
Saxena, R. K, Mathai, A. M and Haubold, H. J. (2004). On generalized fractional kinetic equations, Physica A , 344, 657–664.
Saxena, R. K, Mathai, A. M. and Haubold, H. J. (2004). Unified fractional kinetic equations and a fractional diffusion equation, Astrophysics and Space Science, 290, 241–245.
Saxena, R. K. and Nishimoto, K. (2002). On a fractional integral formula of Saigo operator, J. Fract. Calc., 22, 57–58.
Saxena, R. K. and Saigo, M. (2005). Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function. Frac. Calc. Appl. Ana1., 8(2), 141–154.
Sneddon, I. N. (1975). The Use in Mathematical Physics of Erdélyi- Kober Operators and Some of Their Applications, Lecture Notes in Mathematics (Edited by B. Ross), 457, 37–79.
Srivastava, H. M. and Saxena, R. K. (2001). Operators of fractional integration and their applications, Appl. Math. Comput., 118, 1–52.
Srivastava, H. M. and Karlsson, P. W. (1985). Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, U.K.
Stein, E. M. (1970). Singular Integrals and Differential Properties of Functions, Princeton University Press, New Jersey.
Wiman, A. (1905). Uber den Fundamental satz in der Theorie de Funktionen E α(x). Acta Math., 29, 191–201.
Weyl, H. (1917). Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung, Vierteljahresschr. Naturforsch. Gen. Zurich, 62, 296–302.
Rights and permissions
Copyright information
© 2008 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
(2008). Mittag-Leffler Functions and Fractional Calculus. In: Special Functions for Applied Scientists. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75894-7_2
Download citation
DOI: https://doi.org/10.1007/978-0-387-75894-7_2
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-75893-0
Online ISBN: 978-0-387-75894-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)