[go: up one dir, main page]

Skip to main content

Mittag-Leffler Functions and Fractional Calculus

  • Chapter
Special Functions for Applied Scientists

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, R. P. (1953). A Propos d’une note de M. Pierre Humbert, C. R. Acad. Sci. Paris, 296, 2031–2032.

    Google Scholar 

  • Agarwal, R. P. (1963). Generalized Hypergeometric Series, Asia Publishing House, Bombay, London and New York.

    Google Scholar 

  • Caputo, M. (1969). Elasticitá e Dissipazione, Zanichelli, Bologna.

    Google Scholar 

  • Dzherbashyan, M.M. (1966). Integral Transforms and Representation of Functions in Complex Domain (in Russian), Nauka, Moscow.

    Google Scholar 

  • Erdélyi, A. (1950-51). On some functional transformations, Univ. Politec. Torino, Rend. Sem. Mat. 10, 217–234.

    Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953). Higher Transcendental Functions, Vol. 1, McGraw - Hill, New York, Toronto and London.

    Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954). Tables of Integral Transforms, Vol. 1, McGraw - Hill, New York, Toronto and London.

    Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954a). Tables of Integral Transforms, Vol. 2, McGraw - Hill, New York, Toronto and London.

    Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1955). Higher Transcendental Functions, Vol. 3, McGraw - Hill, New York, Toronto and London.

    MATH  Google Scholar 

  • Fox, C. (1963). Integral transforms based upon fractional integration, Proc. Cambridge Philos. Soc., 59, 63–71.

    Article  MathSciNet  Google Scholar 

  • Haubold, H. J. and Mathai, A. M. (2000). The fractional kinetic equation and thermonuc1ear functions, Astrophysics and Space Science, 273, 53–63.

    Article  MATH  ADS  Google Scholar 

  • Hilfer, R. (Ed.). (2000). Applications of Fractional Calculus in Physics, World Scientific, Singapore.

    MATH  Google Scholar 

  • Kalla, S. L. and Saxena, R. K. (1969). Integral operators involving hypergeometric functions, Math. Zeitschr., 108, 231–234.

    Article  MATH  MathSciNet  Google Scholar 

  • Kilbas. A. A. and Saigo, M. (1998). Fractional calculus of the H-function, Fukuoka Univ. Science Reports, 28, 41–51.

    MATH  MathSciNet  Google Scholar 

  • Kilbas, A. A. and Saigo, M. (1996). On Mittag- Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transforms and Special Functions, 4, 355–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Kilbas, A. A, Saigo, M. and Saxena, R. K. (2002). Solution of Volterra integrodifferential equations with generalized Mittag-Leffler function in the kernels, J. Integral Equations and Applications, 14, 377–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Kilbas, A. A., Saigo, M. and Saxena, R. K. (2004). Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms and Special Functions, 15, 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Kober, H. (1940). On fractional integrals and derivatives, Quart. J. Math. Oxford, Ser. ll, 193–211.

    Google Scholar 

  • Love, E. R (1967). Some integral equations involving hypergeometric functions,Proc. Edin. Math. Soc., 15(2), 169–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Mathai, A. M. and Saxena, R. K. (1973). Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Mathematics, 348, Springer- Verlag, Berlin, Heidelberg.

    MATH  Google Scholar 

  • Mathai, A. M. and Saxena, R. K. (1978). The H-function with Applications in Statistics and Other Disciplines, John Wiley and Sons, New York - London - Sydney.

    MATH  Google Scholar 

  • Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.

    MATH  Google Scholar 

  • Mittag-Leffler, G. M. (1903). Sur la nouvelle fonction E α(x), C. R. Acad. Sci. Paris, (Ser. II) 137, 554–558.

    Google Scholar 

  • Oldham, K. B. and Spanier, J. (1974). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York.

    MATH  Google Scholar 

  • Podlubny, 1. (1999). Fractional Differential Equations, Academic Press, San Diego.

    MATH  Google Scholar 

  • Podlubny, 1. (2002). Geometric and physical interpretations of fractional integration and fractional differentiation, Frac. Calc. Appl. Anal., 5(4), 367–386.

    MATH  MathSciNet  Google Scholar 

  • Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag- Leffler function in the kernel,Yokohama Math. J., 19, 7–15.

    MATH  MathSciNet  Google Scholar 

  • Ross, B. (1994). A formula for the fractional integration and differentiation of (a + b x)c, J. Fract. Calc., 5, 87–89.

    MATH  ADS  MathSciNet  Google Scholar 

  • Saigo, M. (1978). A remark on integral operators involving the Gauss hypergeometric function,Math. Reports of College of Gen. Edu., Kyushu University, 11, 135–143.

    MathSciNet  Google Scholar 

  • Saigo, M. and Raina, R. K. (1988). Fractional calculus operators associated with a general class of polynomials, Fukuoka Univ. Science Reports, 18, 15–22.

    MATH  ADS  MathSciNet  Google Scholar 

  • Samko, S. G., Kilbas, A. A. and Marichev, 0. 1. (1993). Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Reading.

    Google Scholar 

  • Saxena, R. K. (1967). On fractional integration operators, Math. Zeitsch., 96, 288–291.

    Article  MATH  Google Scholar 

  • Saxena, R. K. (2002). Certain properties of generalized Mittag-Leffler function, Proceedings of the Third Annual Conference of the Society for Special Functions and Their Applications, Varanasi, March 4-6, 75–81.

    Google Scholar 

  • Saxena, R. K. (2003). Alternative derivation of the solution of certain integro-differential equations of Volterra-type, Ganita Sandesh, 17(1), 51–56.

    MathSciNet  MATH  Google Scholar 

  • Saxena,R. K. (2004). On a unified fractional generalization of free electron laser equation, Vijnana Parishad Anusandhan Patrika, 47(l), 17–27.

    MathSciNet  MATH  Google Scholar 

  • Saxena, R. K. and Kumbhat, R. K. (1973). A generalization of Kober operators, Vijnana Parishad Anusandhan Patrika, 16, 31–36.

    MathSciNet  Google Scholar 

  • Saxena, R. K. and Kumbhat, R. K. (1974). Integral operators involving H-function, Indian J. Pure appl. Math., 5, 1–6.

    MATH  MathSciNet  Google Scholar 

  • Saxena, R. K. and Kumbhat, R. K. (1975). Some properties of generalized Kober operators, Vijnana Parishad Anusandhan Patrika, 18, 139–150.

    MathSciNet  MATH  Google Scholar 

  • Saxena, R. K, Mathai, A. M and Haubold, H. J. (2002). On fractional kinetic equations, Astrophysics and Space Science, 282, 281–287.

    Article  ADS  Google Scholar 

  • Saxena, R. K, Mathai, A. M and Haubold, H. J. (2004). On generalized fractional kinetic equations, Physica A , 344, 657–664.

    Article  ADS  MathSciNet  Google Scholar 

  • Saxena, R. K, Mathai, A. M. and Haubold, H. J. (2004). Unified fractional kinetic equations and a fractional diffusion equation, Astrophysics and Space Science, 290, 241–245.

    Article  MATH  ADS  Google Scholar 

  • Saxena, R. K. and Nishimoto, K. (2002). On a fractional integral formula of Saigo operator, J. Fract. Calc., 22, 57–58.

    MATH  MathSciNet  Google Scholar 

  • Saxena, R. K. and Saigo, M. (2005). Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function. Frac. Calc. Appl. Ana1., 8(2), 141–154.

    MATH  MathSciNet  Google Scholar 

  • Sneddon, I. N. (1975). The Use in Mathematical Physics of Erdélyi- Kober Operators and Some of Their Applications, Lecture Notes in Mathematics (Edited by B. Ross), 457, 37–79.

    Article  MathSciNet  Google Scholar 

  • Srivastava, H. M. and Saxena, R. K. (2001). Operators of fractional integration and their applications, Appl. Math. Comput., 118, 1–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Srivastava, H. M. and Karlsson, P. W. (1985). Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, U.K.

    MATH  Google Scholar 

  • Stein, E. M. (1970). Singular Integrals and Differential Properties of Functions, Princeton University Press, New Jersey.

    Google Scholar 

  • Wiman, A. (1905). Uber den Fundamental satz in der Theorie de Funktionen E α(x). Acta Math., 29, 191–201.

    Article  MATH  MathSciNet  Google Scholar 

  • Weyl, H. (1917). Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung, Vierteljahresschr. Naturforsch. Gen. Zurich, 62, 296–302.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Mittag-Leffler Functions and Fractional Calculus. In: Special Functions for Applied Scientists. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75894-7_2

Download citation

Publish with us

Policies and ethics