[go: up one dir, main page]

Skip to main content

Advertisement

Log in

The Modern Concepts of Energy Balance and Energy Availability in Sports

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The imbalance between energy intake and total energy expenditure is the cause of a negative energy balance and, in combination with prolonged intense physical activity, can lead to the development of low energy availability (LEA). The concept of LEA is associated with several endocrine, cardiovascular, inflammatory, gastrointestinal, and mental characteristics, which have been combined under the term Relative energy deficiency in sports (RED-S). Our analysis of the world literature has shown a high prevalence of LEA and RED-S against the background of insufficient awareness of coaches and athletes about energy deficiency and its negative health consequences, which emphasizes the importance of this problem. That is why the issues of early diagnosis, adequate treatment, and prevention of RED-S, taking into account the specifics of the sport, gender, and age, are of great practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Mountjoy, M., Sundgot-Borgen, J., Burke, L.M., et al., The IOC consensus statement: beyond the female athlete triad—relative energy deficiency in sport (RED-S), Br. J. Sports Med., 2014, vol. 48, no. 7, p. 491.

    Article  PubMed  Google Scholar 

  2. Kerksick, C.M., Wilborn, C.D., Roberts, M.D., et al., ISSN exercise and sports nutrition review update: research and recommendations, J. Int. Soc. Sports Nutr., 2018, vol. 15, no. 1, p. 38.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jagim, A.R., Fields, J.B., Magee, M., et al., The influence of sport nutrition knowledge on body composition and perceptions of dietary requirements in collegiate athletes, Nutrients, 2021, vol. 13, no. 7, p. 2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Logue, D.M., Madigan, S.M., Melin, A., et al., Low energy availability in athletes 2020: an updated narrative review of prevalence, risk, within-day energy balance, knowledge and impact on sport performance, Nutrients, 2020, vol. 12, no. 3, p. 835.

    Article  PubMed  PubMed Central  Google Scholar 

  5. De Souza, M.J., Koltun, K.J., and Williams, N.I., What is the evidence for a Triad-like syndrome in exercising men? Curr. Opin. Physiol., 2019, vol. 10, p. 27.

    Article  Google Scholar 

  6. Burke, L.M., Close, G.L., Mooses, M., et al., Relative energy deficiency in sport in male athletes: a commentary on its presentation among selected groups of male athletes, Int. J. Sport Nutr. Exerc. Metab., 2018, vol. 28, no. 4, p. 364.

    Article  PubMed  Google Scholar 

  7. Logue, D.M., Madigan, S.M., Delahunt, E., et al., Low energy availability in athletes: a review of prevalence, dietary patterns, physiological health, and sports performance, Sports Med., 2018, vol. 48, no. 1, p. 73.

    Article  PubMed  Google Scholar 

  8. Brunet, P., Ambresin, A.E., and Gojanovic, B., What do you know of RED-S? A field study on adolescent coaches' knowledge, Rev. Med. Suisse, 2019, vol. 15, no. 657, p. 1334.

    PubMed  Google Scholar 

  9. Gonzalez, J.T., Betts, J.A., and Thompson, D., Carbohydrate availability as a regulator of energy balance with exercise, Exerc. Sport Sci. Rev., 2019, vol. 47, no. 4, p. 215.

    Article  PubMed  Google Scholar 

  10. Taguchi, M. and Manore, M.M., Reexamining the calculations of exercise energy expenditure in the energy availability equation of free-living athletes, Front. Sports Act. Living, 2022, vol. 4, p. 885631.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Esteves de Oliveira, F.C., de Mello Cruz, A.C., Gonçalves Oliveira, C., et al., Energy expenditure of healthy Brazilian adults: a comparison of methods, Nutr. Hosp., 2008, vol. 23, no. 6, p. 554.

    CAS  PubMed  Google Scholar 

  12. Levine, J.A., Measurement of energy expenditure, Public Health Nutr., 2005, vol. 8, no. 7A, p. 1123.

    Article  PubMed  Google Scholar 

  13. Blasco Redondo, R., Resting energy expenditure; assessment methods and applications, Nutr. Hosp., 2015, vol. 31, suppl. 3, p. 245.

    PubMed  Google Scholar 

  14. Heydenreich, J., Kayser, B., Schutz, Y., and Melzer, K., Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: a systematic review, Sports Med. Open, 2017, vol. 3, no. 1, p. 8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. MacKenzie-Shalders, K., Kelly, J.T., So, D., et al., The effect of exercise interventions on resting metabolic rate: a systematic review and meta-analysis, J. Sports Sci., 2020, vol. 38, no. 14, p. 1635.

    Article  PubMed  Google Scholar 

  16. Bushmanova, E.A. and Lyudinina, A.Yu., Contemporary approaches to the assessment of energy intake and energy expenditure in athletes, Vopr. Pitan., 2023, vol. 92, no. 5(549), p. 16.

  17. Burke, L.M., Lundy, B., Fahrenholtz, I.L., and Melin, A.K., Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes, Int. J. Sport Nutr. Exerc. Metab., 2018, vol. 28, no. 4, p. 350.

    Article  PubMed  Google Scholar 

  18. Siedler, M.R., De Souza, M.J., Albracht-Schulte, K., et al., The influence of energy balance and availability on resting metabolic rate: implications for assessment and future research directions, Sports Med., 2023, vol. 53, no. 8, p. 1507.

    Article  PubMed  Google Scholar 

  19. Schulz, L.O., Alger, S., Harper, I., et al., Energy expenditure of elite female runners measured by respiratory chamber and doubly labeled water, J. Appl. Physiol., 1992, vol. 72, no. 1, p. 23.

    Article  CAS  PubMed  Google Scholar 

  20. Motonaga, K., Yoshida, S., Yamagami, F., et al., Estimation of total daily energy expenditure and its components by monitoring the heart rate of Japanese endurance athletes, J. Nutr. Sci. Vitaminol. (Tokyo), 2006, vol. 52, no. 5, p. 360.

    Article  CAS  PubMed  Google Scholar 

  21. Herring, J.L., Mole, P.A., Meredith, C.N., and Stern, J.S., Effect of suspending exercise training on resting metabolic rate in women, Med. Sci. Sports Exerc., 1992, vol. 24, no. 1, p. 59.

    Article  CAS  PubMed  Google Scholar 

  22. Hassapidou, M.N. and Manstrantoni, A., Dietary intakes of elite female athletes in Greece, J. Hum. Nutr. Diet., 2001, vol. 14, no. 5, p. 391.

    Article  CAS  PubMed  Google Scholar 

  23. Hill, R.J. and Davies, P.S., Energy intake and energy expenditure in elite lightweight female rowers, Med. Sci. Sports Exerc., 2002, vol. 34, no. 11, p. 1823.

    Article  PubMed  Google Scholar 

  24. Fudge, B.W., Westerterp, K.R., Kiplamai, F.K., et al., Evidence of negative energy balance using doubly labelled water in elite Kenyan endurance runners prior to competition, Br. J. Nutr., 2006, vol. 95, no. 1, p. 59.

    Article  CAS  PubMed  Google Scholar 

  25. Sjodin, A.M., Andersson, A.B., Hogberg, J.M., and Westerterp, K.R., Energy balance in cross-country skiers: a study using doubly labeled water, Med. Sci. Sports Exerc., 1994, vol. 26, no. 6, p. 720.

    Article  CAS  PubMed  Google Scholar 

  26. Papadopoulou, S.K., Gouvianaki, A., Grammatikopoulou, M.G., et al., Body composition and dietary intake of elite cross-country skiers members of the Greek national team, Asian J. Sports Med., 2012, vol. 3, no. 4, p. 257.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boulay, M.R., Serresse, O., Almeras, N., and Tremblay, A., Energy expenditure measurement in male cross-country skiers: comparison of two field methods, Med. Sci. Sports Exerc., 1994, vol. 26, no. 2, p. 248.

    Article  CAS  PubMed  Google Scholar 

  28. Costa, R.J., Gill, S.K., Hankey, J., et al., Perturbed energy balance and hydration status in ultra-endurance runners during a 24 h ultramarathon, Br. J. Nutr., 2014, vol. 112, no. 3, p. 428.

    Article  CAS  PubMed  Google Scholar 

  29. Bescós, R., Rodríguez, F.A., Iglesias, X., et al., Nutritional behavior of cyclists during a 24-hour team relay race: a field study report, J. Int. Soc. Sports Nutr., 2012, vol. 9, no. 1, p. 3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Armstrong, L.E., Casa, D.J., Emmanuel, H., et al., Nutritional, physiological, and perceptual responses during a summer ultraendurance cycling event, J. Strength Cond. Res., 2012, vol. 26, no. 2, p. 307.

    Article  PubMed  Google Scholar 

  31. Martin, M.K., Martin, D.T., Collier, G.R., and Burke, L.M., Voluntary food intake by elite female cyclists during training and racing: influence of daily energy expenditure and body composition, Int. J. Sport Nutr. Exerc. Metab. 2002, vol. 12, no. 3, p. 249.

    Article  PubMed  Google Scholar 

  32. Hulton, A.T., Lahart, I., Williams, K.L., et al., Energy expenditure in the Race Across America (RAAM), Int. J. Sports Med., 2010, vol. 31, no. 7, p. 463.

    Article  CAS  PubMed  Google Scholar 

  33. Ousley-Pahnke, L., Black, D.R., and Gretebeck, R.J., Dietary intake and energy expenditure of female collegiate swimmers during decreased training prior to competition, J. Am. Diet Assoc., 2001, vol. 101, no. 3, p. 351.

    Article  CAS  PubMed  Google Scholar 

  34. Trappe, T.A., Gastaldelli, A., Jozsi, A.C., et al., Energy expenditure of swimmers during high volume training, Med. Sci. Sports Exerc., 1997, vol. 29, no. 7, p. 950.

    Article  CAS  PubMed  Google Scholar 

  35. Jones, P.J. and Leitch, C.A., Validation of doubly labeled water for measurement of caloric expenditure in collegiate swimmers, J. Appl. Physiol., 1993, vol. 74, no. 6, p. 2909.

    Article  CAS  PubMed  Google Scholar 

  36. Magkos, F. and Yannakoulia, M., Methodology of dietary assessment in athletes: concepts and pitfalls, Curr. Opin. Clin. Nutr. Metab. Care, 2003, vol. 6, no. 5, p. 539.

    Article  PubMed  Google Scholar 

  37. Wasserfurth, P., Palmowski, J., Hahn, A., Krüger, K., Reasons for and consequences of low energy availability in female and male athletes: social environment, adaptations, and prevention, Sports Med., Open. 2020, vol. 6, no. 1, p. 44.

    Article  PubMed  Google Scholar 

  38. Hall, K.D., Heymsfield, S.B., Kemnitz, J.W., et al., Energy balance and its components: implications for body weight regulation, Am. J. Clin. Nutr., 2012, vol. 95, no. 4, p. 989.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hill, J.O., Wyatt, H.R., and Peters, J.C., The importance of energy balance, Eur. Endocrinol., 2013, vol. 9, no. 2, p. 111.

    PubMed  PubMed Central  Google Scholar 

  40. Hankinson, A.L., Daviglus, M.L., Bouchard, C., et al., Maintaining a high physical activity level over 20 years and weight gain, JAMA, 2010, vol. 304, no. 23, p. 2603.

    Article  CAS  PubMed  Google Scholar 

  41. Loucks, A.B., Energy balance and body composition in sports and exercise, J. Sports Sci., 2004, vol. 22, no. 1, p. 1.

    Article  PubMed  Google Scholar 

  42. Sundgot-Borgen, J., Meyer, N.L., Lohman, T.G., et al., How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission, Br. J. Sports Med., 2013, vol. 47, no. 16, p. 1012.

    Article  PubMed  Google Scholar 

  43. Stellingwerff, T., Boit, M.K., and Res, P.T., Nutritional strategies to optimize training and racing in middle-distance athletes, J. Sports Sci., 2007, vol. 25, suppl. 1, p. S17.

    Article  PubMed  Google Scholar 

  44. Soares, M.J. and Müller, M.J., Resting energy expenditure and body composition: critical aspects for clinical nutrition, Eur. J. Clin. Nutr., 2018, vol. 72, no. 9, p. 1208.

    Article  CAS  PubMed  Google Scholar 

  45. Nunes, C.L., Jesus, F., Francisco, R., et al., Adaptive thermogenesis after moderate weight loss: magnitude and methodological issues, Eur. J. Nutr., 2021, vol. 61, no. 3, p. 1405.

    Article  PubMed  Google Scholar 

  46. Egan, A.M. and Collins, A.L., Dynamic changes in energy expenditure in response to underfeeding: a review, Proc. Nutr. Soc., 2022, vol. 81, no. 2, p. 199.

    Article  PubMed  Google Scholar 

  47. Muller, M.J., Enderle, J., and Bosy-Westphal, A., Changes in energy expenditure with weight gain and weight loss in humans, Curr. Obesity Rep., 2016, vol. 5, no. 4, p. 413.

    Article  Google Scholar 

  48. Siedler, M.R., De Souza, M.J., Albracht-Schulte, K., et al., The influence of energy balance and availability on resting metabolic rate: implications for assessment and future research directions, Sports Med., 2023, vol. 53, no. 8, p. 1507.

    Article  PubMed  Google Scholar 

  49. Westerterp, K.R., Metabolic adaptations to over- and underfeeding— still a matter of debate? Eur. J. Clin. Nutr., 2013, vol. 67, no. 5, p. 443.

    Article  CAS  PubMed  Google Scholar 

  50. Martins, C., Roekenes, J., Salamati, S., et al., Metabolic adaptation is an illusion, only present when participants are in negative energy balance, Am. J. Clin. Nutr., 2020, vol. 112, no. 5, p. 1212.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martin, A., Fox, D., Murphy, C.A., et al., Tissue losses and metabolic adaptations both contribute to the reduction in resting metabolic rate following weight loss, Int. J. Obesity (London), 2022, vol. 46, no. 6, p. 1168.

    Article  CAS  Google Scholar 

  52. Areta, J.L., Taylor, H.L., and Koehler, K., Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males, Eur. J. Appl Physiol., 2021, vol. 121, no. 1, p. 1.

    Article  PubMed  Google Scholar 

  53. Woods, A.L., Rice, A.J., Garvican-Lewis, L.A., et al., The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists, PLoS One, 2018, vol. 13, no. 2, p. e0191644.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Edinburgh, R.M., Hengist, A., Smith, H.A., et al., Skipping breakfast before exercise creates a more negative 24-hour energy balance: a randomized controlled trial in healthy physically active young men, J. Nutr., 2019, vol. 149, no. 8, p. 1326.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beaulieu, K., Hopkins, M., Long, C., et al., High habitual physical activity improves acute energy compensation in nonobese adults, Med. Sci. Sports Exerc., 2017, vol. 49, no. 11, p. 2268.

    Article  PubMed  Google Scholar 

  56. Lodge, M.T., Ward-Ritacco, C.L., and Melanson, K.J., Considerations of Low Carbohydrate Availability (LCA) to Relative Energy Deficiency in Sport (RED-S) in female endurance athletes: a narrative review, Nutrients, 2023, vol. 15, no. 20, p. 4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Loucks, A.B., Kiens, B., and Wright, H.H., Energy availability in athletes, J. Sports Sci., 2011, vol. 29, supp-l. 1, p. S7.

    Article  PubMed  Google Scholar 

  58. Mountjoy, M., Sundgot-Borgen, J.K., Burke, L.M., et al., IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update, Br. J. Sports Med., 2018, vol. 52, no. 11, p. 687.

    Article  PubMed  Google Scholar 

  59. Sim, A. and Burns, S.F., Review: questionnaires as measures for low energy availability (LEA) and relative energy deficiency in sport (RED-S) in athletes, J. Eating Disord., 2021, vol. 9, no. 1, p. 41.

    Article  Google Scholar 

  60. Desbrow, B., Slater, G., and Cox, G.R., Sports nutrition for the recreational athlete, Aust. J. Gen. Pract., 2020, vol. 49, nos. 1—2, p. 17.

    Article  PubMed  Google Scholar 

  61. Jurov, I., Keay, N., Hadžić, V., et al., Relationship between energy availability, energy conservation and cognitive restraint with performance measures in male endurance athletes, J. Int. Soc. Sports Nutr., 2021, vol. 18, no. 1, p. 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loucks, A.B. and Thuma, J.R., Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women, J. Clin. Endocrinol. Metab., 2003, vol. 88, no. 1, p. 297.

    Article  CAS  PubMed  Google Scholar 

  63. Koehler, K., Hoerner, N.R., Gibbs, J.C., et al., Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones, J. Sports Sci., 2016, vol. 34, no. 20, p. 1921.

    Article  PubMed  Google Scholar 

  64. Viner, R.T., Harris, M., Berning, J.R., and Meyer, N.L., Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density, Int. J. Sport Nutr. Exerc. Metab., 2015, vol. 25, no. 6, p. 594.

    Article  PubMed  Google Scholar 

  65. Elliott-Sale, K.J., Tenforde, A.S., Parziale, A.L., et al., Endocrine effects of relative energy deficiency in sport, Int. J. Sport Nutr. Exerc. Metab., 2018, vol. 28, no. 4, p. 335.

    Article  CAS  PubMed  Google Scholar 

  66. Papageorgiou, M., Elliott-Sale, K.J., Parsons, A., et al., Effects of reduced energy availability on bone metabolism in women and men, Bone, 2017, vol. 105, p. 191.

    Article  CAS  PubMed  Google Scholar 

  67. Fazeli, P.K. and Klibanski, A., Determinants of GH resistance in malnutrition, J. Endocrinol., 2014, vol. 220, no. 3, p. R57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murphy, C. and Koehler, K., Caloric restriction induces anabolic resistance to resistance exercise, Eur. J. Appl. Physiol., 2020, vol. 120, no. 5, p. 1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stellingwerff, T., Maughan, R.J., and Burke, L.M., Nutrition for power sports: middle distance running, track cycling, rowing, canoeing/kayaking, and swimming, J. Sports Sci., 2011, vol. 29, suppl. 1, p. S79.

    Article  PubMed  Google Scholar 

  70. Nattiv, A., Loucks, A.B., Manore, M.M., et al., American College of Sports Medicine position stand: the female athlete triad, Med. Sci. Sports Exerc., 2007, vol. 39, no. 10, p. 1867.

    Article  PubMed  Google Scholar 

  71. Hooper, D.R., Tenforde, A.S., and Hackney, A.C., Treating exercise-associated low testosterone and its related symptoms, Phys. Sportsmed., 2018, vol. 46, no. 4, p. 427.

    Article  PubMed  Google Scholar 

  72. Schofield, K.L., Thorpe, H., and Sims, S.T., Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population, Exp. Physiol., 2019, vol. 104, no. 4, p. 469.

    Article  CAS  PubMed  Google Scholar 

  73. Strock, N.-C.A., Koltun, K.J., Southmayd, E.A., et al., Indices of resting metabolic rate accurately reflect energy deficiency in exercising women, Int. J. Sport Nutr. Exerc. Metab., 2020, vol. 30, no. 1, p. 14.

    Article  CAS  PubMed  Google Scholar 

  74. Sterringer, T. and Larson-Meyer, D.E., RMR ratio as a surrogate marker for low energy availability, Curr. Nutr. Rep., 2022, vol. 11, no. 2, p. 263.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was performed as part of State Assignment no. GR1021051201877-3-3.1.8 (2022–2026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Bushmanova or A. Yu. Lyudinina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that they have no obvious or potential conflicts of interest related to the publication of this article.

Additional information

Translated by D. Zabolotny

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushmanova, E.A., Lyudinina, A.Y. The Modern Concepts of Energy Balance and Energy Availability in Sports. Hum Physiol 50, 646–656 (2024). https://doi.org/10.1134/S0362119724701111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119724701111

Keywords: