[go: up one dir, main page]

Skip to main content
Log in

Wavelet representation of singular integral operators

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This article develops a novel approach to the representation of singular integral operators of Calderón–Zygmund type in terms of continuous model operators, in both the classical and the bi-parametric setting. The representation is realized as a finite sum of averages of wavelet projections of either cancellative or noncancellative type, which are themselves Calderón–Zygmund operators. Both properties are out of reach for the established dyadic-probabilistic technique. Unlike their dyadic counterparts, our representation reflects the additional kernel smoothness of the operator being analyzed. Our representation formulas lead naturally to a new family of T(1) theorems on weighted Sobolev spaces whose smoothness index is naturally related to kernel smoothness. In the one parameter case, we obtain the Sobolev space analogue of the \(A_2\) theorem; that is, sharp dependence of the Sobolev norm of T on the weight characteristic is obtained in the full range of exponents. In the bi-parametric setting, where local average sparse domination is not generally available, we obtain quantitative \(A_p\) estimates which are best known, and sharp in the range \(\max \{p,p'\}\ge 3\) for the fully cancellative case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The exponent of the \(A_2\) constant obtained in [4,  Corollary 3.2] is 10, in contrast with power 3 obtained in (6.20). Therein, it is claimed that tracking the constants in the argument of [27] yields power 8.

  2. For instance, when proving Theorems A, B below, any \(D\ge 8(\max \{k_1,k_2\}+ d_1 + d_2)\) will suffice.

References

  1. Alpert, B.K.: A class of bases in \(L^{2}\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Astala, K., Iwaniec, T., Saksman, E.: Beltrami operators in the plane. Duke Math. J. 107(1), 27–56 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Barron, A., Conde-Alonso, J.M., Ou, Y., Rey, G.: Sparse domination and the strong maximal function. Adv. Math. 345, 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Barron, A., Pipher, J.: Sparse domination for bi-parameter operators using square functions (2017). arXiv:1709.05009

  5. Benea, C., Bernicot, F.: Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray-Hopf. Ann. Inst. Fourier (Grenoble) 68(6), 2329–2379 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Bényi, Á., Torres, R.H.: The discrete Calderón reproducing formula of Frazier and Jawerth. Functional analysis, harmonic analysis, and image processing: a collection of papers in honor of Bjorn Jawerth, pp. 79–107 (2017)

  7. Brocchi, G., A sparse quadratic T1 theorem, New York. J. Math. 26, 1232–1272 (2020).

  8. Chang, S.-Y.A., Fefferman, R.: A continuous version of duality of \(H^{1}\) with BMO on the bidisc. Ann. Math. (2) 112(1), 179–201 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Conde-Alonso, J.M., Culiuc, A., Di Plinio, F., Ou, Y.: A sparse domination principle for rough singular integrals. Anal. PDE 10(5), 1255–1284 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Cruz, V., Mateu, J., Orobitg, J.: Beltrami equation with coefficient in Sobolev and Besov spaces. Can. J. Math. 65(6), 1217–1235 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cruz, V., Tolsa, X.: Smoothness of the Beurling transform in Lipschitz domains. J. Funct. Anal. 262(10), 4423–4457 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215. Birkhäuser/Springer Basel AG, Basel (2011)

    MATH  Google Scholar 

  13. Culiuc, A., Di Plinio, F., Ou, Y.: Uniform sparse domination of singular integrals via dyadic shifts. Math. Res. Lett. 25(1), 21–42 (2018)

    MathSciNet  MATH  Google Scholar 

  14. David, G., Journé, J.-L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. (2) 120(2), 371–397 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Dragičević, O., Volberg, A.: Sharp estimate of the Ahlfors–Beurling operator via averaging martingale transforms. Mich. Math. J. 51(2), 415–435 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Duoandikoetxea, J.: Extrapolation of weights revisited: new proofs and sharp bounds. J. Funct. Anal. 260(6), 1886–1901 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Fefferman, R.: \(A^{p}\) weights and singular integrals. Am. J. Math. 110(5), 975–987 (1988)

    MATH  Google Scholar 

  18. Fefferman, R., Pipher, J.: Multiparameter operators and sharp weighted inequalities. Am. J. Math. 119(2), 337–369 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Fefferman, R.: Harmonic analysis on product spaces. Ann. Math. (2) 126(1), 109–130 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Ferguson, S.H., Lacey, M.T.: A characterization of product BMO by commutators. Acta Math. 189(2), 143–160 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Ferguson, S.H., Sadosky, C.: Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures. J. Anal. Math. 81, 239–267 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Figiel, T.: Singular Integral Operators: A Martingale Approach. Geometry of Banach Spaces (Strobl, 1989), pp. 95–110 (1990)

  23. Frazier, M., Torres, R., Weiss, G.: The boundedness of Calderón–Zygmund operators on the spaces \(\dot{F}^{\alpha ,q}_p\). Rev. Mat. Iberoam. 4(1), 41–72 (1988)

    MATH  Google Scholar 

  24. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1991)

  25. Hagelstein, P., Luque, T., Parissis, I.: Tauberian conditions, Muckenhoupt weights, and differentiation properties of weighted bases. Trans. Am. Math. Soc. 367(11), 7999–8032 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Hart, J., Oliveira, L.: Hardy space estimates for limited ranges of Muckenhoupt weights. Adv. Math. 313, 803–838 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Holmes, I., Petermichl, S., Wick, B.D.: Weighted little bmo and two-weight inequalities for Journé commutators. Anal. PDE 11(7), 1693–1740 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Hytönen, T., Lappas, S.: Dyadic representation theorem using smooth wavelets with compact support (2020). arXiv:2003.04019

  29. Hytönen, T.P.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Journé, J.-L.: Calderón–Zygmund operators on product spaces. Rev. Mat. Iberoam. 1(3), 55–91 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Lacey, M.T.: An elementary proof of the \(A_{2}\) bound. Isr. J. Math. 217(1), 181–195 (2017)

    MATH  Google Scholar 

  33. Lacey, M.T., Petermichl, S., Reguera, M.C.: Sharp \(A_{2}\) inequality for Haar shift operators. Math. Ann. 348(1), 127–141 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Lacey, M.T., Sawyer, E.T., Uriarte-Tuero, I.: Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane. Acta Math. 204(2), 273–292 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Lerner, A.K.: Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals. Adv. Math. 226(5), 3912–3926 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Lerner, A.K.: A simple proof of the \(A_{2}\) conjecture. Int. Math. Res. Not. IMRN 14, 3159–3170 (2013)

    MATH  Google Scholar 

  37. Lerner, A.K.: On pointwise estimates involving sparse operators. N. Y. Math. 22, 341–349 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Lerner, A.K.: Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers. Math. Res. Lett. 26(2), 537–556 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Li, K., Martikainen, H., Ou, Y., Vuorinen, E.: Bilinear representation theorem. Trans. Am. Math. Soc. 371(6), 4193–4214 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Li, K., Martikainen, H., Vuorinen, E.: Bilinear Calderón–Zygmund theory on product spaces. Journal de Mathématiques Pures et Appliquées 138, 356–412 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Martikainen, H.: Representation of bi-parameter singular integrals by dyadic operators. Adv. Math. 229(3), 1734–1761 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Meyer, Y.: Continuité sur les espaces de Hölder et de Sobolev des opérateurs définis par des intégrales singulières. Recent progress in Fourier analysis (El Escorial, 1983), pp. 145–172 (1985)

  43. Meyer, Y., Coifman, R.: Wavelets, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge (1997) (Calderón-Zygmund and multilinear operators, Translated from the 1990 and 1991 French originals by David Salinger)

  44. Müller, D., Ricci, F., Stein, E.M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I. Invent. Math. 119(2), 199–233 (1995)

    MathSciNet  MATH  Google Scholar 

  45. Müller, D., Ricci, F., Stein, E.M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II. Math. Z. 221(2), 267–291 (1996)

    MathSciNet  MATH  Google Scholar 

  46. Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Bi-parameter paraproducts. Acta Math. 193(2), 269–296 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Multi-parameter paraproducts. Rev. Mat. Iberoam. 22(3), 963–976 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Nazarov, F., Treil, S., Volberg, A.: The Bellman functions and two-weight inequalities for Haar multipliers. J. Am. Math. Soc. 12(4), 909–928 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Ou, Y.: Multi-parameter singular integral operators and representation theorem. Rev. Mat. Iberoam. 33(1), 325–350 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Petermichl, S.: The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_{p}\) characteristic. Am. J. Math. 129(5), 1355–1375 (2007)

    MATH  Google Scholar 

  51. Petermichl, S., Treil, S., Volberg, A.: Why the Riesz transforms are averages of the dyadic shifts? In: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), pp. 209–228 (2002)

  52. Petermichl, S., Volberg, A.: Heating of the Ahlfors–Beurling operator: weakly quasiregular maps on the plane are quasiregular. Duke Math. J. 112(2), 281–305 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Prats, M.: Sobolev regularity of the Beurling transform on planar domains. Publ. Mat. 61(2), 291–336 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Prats, M.: Sobolev regularity of quasiconformal mappings on domains. J. Anal. Math. 138(2), 513–562 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Prats, M., Tolsa, X.: A T (P) theorem for Sobolev spaces on domains. J. Funct. Anal. 268(10), 2946–2989 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Rahm, R., Sawyer E.T., Wick, B.D., Weighted Alpert Wavelets. J. Fourier Anal. Appl. 27(1), 1 (2021)

  57. Tao, T.: Lecture notes for 247b (2007). https://math.ucla.edu/~tao/247b.1.07w/notes7.pdf

  58. Torres, R.H.: Boundedness results for operators with singular kernels on distribution spaces. Mem. Am. Math. Soc. 90(442), viii+172 (1991)

    MathSciNet  MATH  Google Scholar 

  59. Vagharshakyan, A.: Recovering singular integrals from Haar shifts. Proc. Am. Math. Soc. 138(12), 4303–4309 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Wang, K.: The generalization of paraproducts and the full T1 theorem for Sobolev and Triebel–Lizorkin spaces. J. Math. Anal. Appl. 209(2), 317–340 (1997)

    MathSciNet  MATH  Google Scholar 

  61. Wilson, J.M.: Weighted norm inequalities for the continuous square function. Trans. Am. Math. Soc. 314(2), 661–692 (1989)

    MathSciNet  MATH  Google Scholar 

  62. Wilson, M.: Weighted Littlewood–Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924. Springer, Berlin (2008)

Download references

Acknowledgements

The authors are deeply thankful to Alexander Barron, Henri Martikainen and Yumeng Ou for illuminating conversations on bi-parameter T(1) theorems and weighted norm inequalities. The authors gratefully acknowledge Walton Green for his insightful reading and suggestions which led to significant improvements to the clarity of the statements and exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett D. Wick.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Di Plinio was partially supported by the National Science Foundation under the grants NSF-DMS-2000510, NSF-DMS-2054863. B. D. Wick’s research partially supported in part by NSF grant NSF-DMS-1800057 as well as ARC DP190100970. Data sharing not applicable to this article as no datasets were generated or analyzed.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Plinio, F., Wick, B.D. & Williams, T. Wavelet representation of singular integral operators. Math. Ann. 386, 1829–1889 (2023). https://doi.org/10.1007/s00208-022-02443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02443-3

Mathematics Subject Classification.

Navigation