[go: up one dir, main page]

Skip to main content
Log in

A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A quantum deformation of the Virasoro algebra is defined. The Kac determinants at arbitrary levels are conjectured. We construct a bosonic realization of the quantum deformed Virasoro algebra. Singular vectors are expressed by the Macdonald symmetric functions. This is proved by constructing screening currents acting on the bosonic Fock space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calogero, F.: J. Math. Phys. 10 (1969), 2197–2200; Sutherland, B.: J. Math. Phys. 12 (1970), 246–250, 251–256.

    Google Scholar 

  2. Belavin, A. A., Polyakov, A. M. and Zamolodchikov, A. B.: Nuclear Phys. B 241 (1984), 333–380.

    Google Scholar 

  3. Awata, H., Matsuo, Y., Odake, S. and Shiraishi, J.: Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B 347 (1995), 49–55; A note on the Calogero-Sutherland model, W nsingular vectors and generalized matrix models, Preprint, hep-th/9503028, to appear in Soryushiron Kenkyu (Kyoto); Excited state of the Calogero-Sutherland model and singular vectors of the W nalgebra, Preprint, hep-th/9503043, to appear in Nuclear Phys. B.

    Google Scholar 

  4. Awata, H., Odake, S. and Shiraishi, J.: Integral representations of the Macdonald symmetric functions and generalized matrix models, Preprint, q-alg/9506006.

  5. Mimachi, K. and Yamada, Y.: Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Preprint (November 1994).

  6. Stanley, R.: Adv. Math. 77 (1989), 76–115; Macdonald, I. G.: Lect. Notes in Math. 1271, Springer, New York, 1987, pp. 189–200.

    Google Scholar 

  7. Feigin, B. L. and Fuchs, D. B.: Skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra, Funktsional. Anal. i Prilozhen 16 (1982), 47; Verma modules over the Virasoro algebra, in L. D. Faddeev and A. A. Malcev (eds), Topology, Proceedings of Leningrad Conference, 1982, Lecture Notes in Math. 1060, Springer, New York, 1985.

    Google Scholar 

  8. Macdonald, I. G.: Symmetric Functions and Hall Functions, Oxford University Press, 1979.

  9. Jevicki, A. and Sakita, B.: Nuclear Phys. B 165 (1980), 511–527.

    Google Scholar 

  10. Andrić, I., Jevicki, A. and Levin, H.: Nuclear Phys. B 215 [FS7] (1983), 307–315.

    Google Scholar 

  11. Felder, G.: Nuclear Phys. B 317 (1989), 215–236; Errata, Nuclear Phys. B 324 (1989), 548.

    Google Scholar 

  12. Frenkel, E. and Reshetikhin, N.: Quantum affine algebras and deformations of the Virasoro and W-algebra, q-alg/9505025, May 1995.

  13. Awata, H., Kubo, H., Odake, S. and Shiraishi, J.: in preparation.

  14. Drinfeld, V. G.: Quantum groups, ICM 86 report.

  15. Jimbo, M.: A q-difference analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63–69.

    Google Scholar 

  16. Gasper, G. and Rahman, M.: Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990.

  17. Kuniba, A. and Suzuki, J.: Analytic Bethe ansatz for fundamental representations of Yangians, Preprint hep-th/9406180.

  18. Bazhanov, V., Lukyanov, S. and Zamolodchikov, A.: Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Preprint hep-th/9412229.

  19. Shiraishi, J.: Free Boson Representation of \(U_q (\widehat{sl}_2 )\), Phys. Lett. A 171 (1992), 243–248; Awata, H., Odake, S. and Shiraishi, J.: Free Boson Representation of \(U_q (\widehat{sl}_3 )\), Lett. Math. Phys. 30 (1994), 207–216; Free Boson Realization of \(U_q (\widehat{sl}_N )\), Comm. Math. Phys. 162 (1994), 61–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiraishi, J., Kubo, H., Awata, H. et al. A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions. Lett Math Phys 38, 33–51 (1996). https://doi.org/10.1007/BF00398297

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398297

Mathematics Subject Classifications (1991)

Key words

Navigation