[go: up one dir, main page]

Skip to main content
Log in

Manganese Oxide-Enriched Copper Oxide (Mn2O3/CuO) Nanocomposite Electrodes for Supercapacitor Application

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates a novel class of electrode materials known as mixed transition-metal oxides (MMOs) for their improved electrochemical capabilities. Specifically, a one-pot hydrothermal method is employed to successfully synthesize binary mixed-metal oxides comprising manganese oxide and copper oxide (Mn2O3/CuO). The interest in MMOs lies in their potential to enhance multifunctional performance compared to single metal oxides, prompting a comprehensive examination of their structure and properties. Various analytical techniques are utilized to investigate the crystal structures, functional groups and surface morphology of the single and binary MMOs. Moreover, electrochemical experiments are conducted to assess their electrochemical behaviour. The results reveal that the Mn2O3 and CuO MMOs’ electrodes exhibit pseudocapacitor-like characteristics, outperforming single metal oxides in terms of specific capacitance. At a current density of 1 A g−1, the Mn2O3/CuO MMOs electrodes achieve a specific capacitance of 342.85 F g−1. Notably, the symmetric device demonstrates excellent retentivity (89.97%) even after 5000 repeated cycles, showcasing its exceptional supercapacitive attributes for maximum energy storage capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available on request due to privacy or other restrictions.

References

  1. Patrick, J.S.J.; Muthupandi, S.; Niranjana, S.R.; Ruban, M.J.R.; Madhavan, J.; Prathap, S.; Swu, T.: A novel synthesis strategy for hybrid quaternary rGO/MnO2/NiO/CuO nanocomposite as electrode for enduring symmetric supercapacitor fabrication. Synth. Metals 293, 117282 (2023). https://doi.org/10.1016/j.synthmet.2023.117282

    Article  Google Scholar 

  2. Margaret, S.M.; Paul Winston, A.J.P.; Muthupandi, S.; Shobha, P.; Sagayaraj, P.: A comparative study of nanostructures of CuO/Cu2O fabricated via potentiostatic and galvanostatic anodization. J. Nanomater. 2021, 5533845 (2021). https://doi.org/10.1155/2021/5533845

    Article  Google Scholar 

  3. Muthupandi, S.; Ruban, M.J.R.; Madhavan, J.; Prathap, S.; Niranjana, S.R.: Interlacing rod and sphere morphology of MnO2 in RGO/NiO/MnO2 ternary nanocomposites for supercapacitive applications. J. Electrochem. Soc. 169(12), 123505 (2022). https://doi.org/10.1149/1945-7111/aca8d0

    Article  Google Scholar 

  4. Joselene Suzan Jennifer, P.; Muthupandi, S.; Niranjana, S.R.; Joe Raja Ruban, M.; Madhavan, J.; Prathap, S.; Victor Antony Raj, M.: Investigation of MnO2/CuO/rGO ternary nanocomposite as electrode material for high-performance supercapacitor. Inorg. Chem. Commun. 146, 110218 (2022). https://doi.org/10.1016/j.inoche.2022.110218

    Article  Google Scholar 

  5. Padmadevi, B.; Kalaivani, T.: Facile synthesis of manganese–copper–zirconium mixed oxide nanocomposites: a potential electrode material for high performance supercapacitors. Ceram. Int. 48, 36101–36109 (2022). https://doi.org/10.1016/j.ceramint.2022.08.152

    Article  Google Scholar 

  6. Wu, J.; Zhou, J.; Lin, Q.; Luo, L.; Lu, Q.: Ternary Co3O4/NiO/reduced graphene oxide hybrid composites with improved electrochemical properties. Ceram. Int. 45, 15394–15399 (2019). https://doi.org/10.1016/j.ceramint.2019.05.035

    Article  Google Scholar 

  7. Karuppaiah, M.; Sakthivel, P.; Asaithambi, S.; Murugan, R.; Babu, G.A.; Yuvakkumar, R.; Ravi, G.: Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications. Ceram. Int. 45, 4298–4307 (2019). https://doi.org/10.1016/j.ceramint.2018.11.104

    Article  Google Scholar 

  8. Mohamed Racik, K.; Manikandan, A.; Mahendiran, M.; Prabakaran, P.; Madhavan, J.; Raj, M.V.A.: Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices. Physica E Low Dimens. Syst. Nanostruct. 119, 114033 (2020). https://doi.org/10.1016/j.physe.2020.114033

    Article  Google Scholar 

  9. Padmadevi, B.; Pugazhendhi, A.; Khalifa, A.S.; Shanmuganathan, R.; Kalaivani, T.: Novel MnO2-CuO-BaO metal oxide nanocomposite for high performance supercapacitors. Process Biochem. 110, 176–180 (2021). https://doi.org/10.1016/j.procbio.2021.08.017

    Article  Google Scholar 

  10. Chakraborty, I.; Chakrabarty, N.; Senapati, A.; Chakraborty, A.K.: CuO@NiO/Polyaniline/MWCNT nanocomposite as high-performance electrode for supercapacitor. J. Phys. Chem. C 122, 27180–27190 (2018). https://doi.org/10.1021/acs.jpcc.8b08091

    Article  Google Scholar 

  11. Ray, A.; Roy, A.; Saha, S.; Ghosh, M.; Roy Chowdhury, S.; Maiyalagan, T.; Bhattacharya, S.K.; Das, S.: Electrochemical energy storage properties of Ni-Mn-oxide electrodes for advance asymmetric supercapacitor application. Langmuir 35, 8257–8267 (2019). https://doi.org/10.1021/acs.langmuir.9b00955

    Article  Google Scholar 

  12. Mandal, M.; Nagaraj, R.; Chattopadhyay, K.; Chakraborty, M.; Chatterjee, S.; Ghosh, D.; Bhattacharya, S.K.: A high-performance pseudocapacitive electrode based on CuO–MnO2 composite in redox-mediated electrolyte. J. Mater. Sci. 56, 3325–3335 (2021). https://doi.org/10.1007/s10853-020-05415-7

    Article  Google Scholar 

  13. Jennifer, P.J.S.; Muthupandi, S.; Niranjana, S.R.; Ruban, M.J.R.; Varghese, D.; Madhavan, J.; Prathap, S.; Raj, M.V.A.: Exploring ternary hybrid nanocomposite of NiO@CuO embedded on reduced graphene oxide as supercapacitor electrode. J. Mater. Sci. Mater. Electron. 34, 727 (2023). https://doi.org/10.1007/s10854-023-10108-3

    Article  Google Scholar 

  14. Lakshmi Ranganatha, V.; Pramila, S.; Nagaraju, G.; Udayabhanu; Surendra, B.S.; Mallikarjunaswamy, C.: Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. J. Mater. Sci. Mater. Electron. 31, 17386–17403 (2020). https://doi.org/10.1007/s10854-020-04295-6

    Article  Google Scholar 

  15. Racik, K.M.; Guruprasad, K.; Mahendiran, M.; Madhavan, J.; Maiyalagan, T.; Raj, M.V.A.: Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability. J. Mater. Sci. Mater. Electron. 30, 5222–5232 (2019). https://doi.org/10.1007/s10854-019-00821-3

    Article  Google Scholar 

  16. Pawar, S.A.; Patil, D.S.; Shin, J.C.: Transition of hexagonal to square sheets of Co3O4 in a triple heterostructure of Co3O4/MnO2/GO for high performance supercapacitor electrode. Curr. Appl. Phys. 19, 794–803 (2019). https://doi.org/10.1016/j.cap.2019.04.009

    Article  Google Scholar 

  17. Zhang, Z.; Ma, C.; Huang, M.; Li, F.; Zhu, S.; Hua, C.; Yu, L.; Zheng, H.; Hu, X.; Zhang, Y.: Birnessite MnO2-decorated hollow dandelion-like CuO architectures for supercapacitor electrodes. J. Mater. Sci. Mater. Electron. 26, 4212–4220 (2015). https://doi.org/10.1007/s10854-015-2969-4

    Article  Google Scholar 

  18. Chen, J.; Huang, Y.; Li, C.; Chen, X.; Zhang, X.: Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application. Appl. Surf. Sci. 360, 534–539 (2016). https://doi.org/10.1016/j.apsusc.2015.10.187

    Article  Google Scholar 

  19. Zhang, Y.; Guo, W.W.; Zheng, T.X.; Zhang, Y.X.; Fan, X.: Engineering hierarchical Diatom@CuO@MnO2 hybrid for high performance supercapacitor. Appl. Surf. Sci. 427, 1158–1165 (2018). https://doi.org/10.1016/j.apsusc.2017.09.064

    Article  Google Scholar 

  20. Chen, Y.-S.; Hu, C.-C.: Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition. Electrochem. Solid-State Lett. 6, A210 (2003). https://doi.org/10.1149/1.1601373

    Article  Google Scholar 

  21. Xin Zhang, Y.; Li, F.; Huang, M.: One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Mater. Lett. 112, 203–206 (2013). https://doi.org/10.1016/j.matlet.2013.09.032

    Article  Google Scholar 

  22. Kakani, V.; Ramesh, S.; Yadav, H.M.; Bathula, C.; Basivi, P.K.; Palem, R.R.; Kim, H.S.; Pasupuletti, V.R.; Lee, H.; Kim, H.: Hydrothermal synthesis of CuO@MnO2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications. Sci. Rep. 12, 12951 (2022). https://doi.org/10.1038/s41598-022-16863-3

    Article  Google Scholar 

  23. Guo, X.L.; Li, G.; Kuang, M.; Yu, L.; Zhang, Y.X.: Tailoring Kirkendall effect of the KCu7S4 microwires towards CuO@MnO2 core-shell nanostructures for supercapacitors. Electrochim. Acta 174, 87–92 (2015). https://doi.org/10.1016/j.electacta.2015.05.157

    Article  Google Scholar 

  24. Diantoro, M.; Istiqomah, I.; Fath, Y.A.; Nasikhudin, N.; Alias, Y.; Meevasana, W.: Potential of MnO2-based composite and numerous morphological for enhancing supercapacitors performance. Int. J. Appl. Ceram. Technol. 20, 2077–2098 (2023). https://doi.org/10.1111/ijac.14377

    Article  Google Scholar 

  25. Ramesh, S.; Kathalingam, A.; Karuppasamy, K.; Kim, H.-S.; Kim, H.S.: Nanostructured CuO/Co2O4@ nitrogen doped MWCNT hybrid composite electrode for high-performance supercapacitors. Compos. B Eng. 166, 74–85 (2019). https://doi.org/10.1016/j.compositesb.2018.11.116

    Article  Google Scholar 

  26. Chen, H.; Zhou, M.; Wang, T.; Li, F.; Zhang, Y.X.: Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high-performance supercapacitors. J Mater Chem A Mater. 4, 10786–10793 (2016). https://doi.org/10.1039/C6TA04258A

    Article  Google Scholar 

  27. He, D.; Wang, G.; Liu, G.; Suo, H.; Zhao, C.: Construction of leaf-like CuO–Cu2O nanocomposites on copper foam for high-performance supercapacitors. Dalton Trans. 46, 3318–3324 (2017). https://doi.org/10.1039/C7DT00287D

    Article  Google Scholar 

  28. Wu, J.; Faiz, Y.; Hussain, S.; Faiz, F.; Zarshad, N.; Rahman, A.U.; Masood, M.A.; Deng, Y.; Pan, X.; Ahmad, M.: Defects rich- Cu-doped MnO2 nanowires as an efficient and durable electrode for high performance aqueous supercapacitors. Electrochim. Acta 443, 141927 (2023). https://doi.org/10.1016/j.electacta.2023.141927

    Article  Google Scholar 

  29. Li, W.; Shao, J.; Liu, Q.; Liu, X.; Zhou, X.; Hu, J.: Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim. Acta 157, 108–114 (2015). https://doi.org/10.1016/j.electacta.2015.01.056

    Article  Google Scholar 

  30. Lu, W.; Li, Y.; Yang, M.; Jiang, X.; Zhang, Y.; Xing, Y.: Construction of hierarchical Mn2O3@MnO2 core-shell nanofibers for enhanced performance supercapacitor electrodes. ACS Appl. Energy Mater. 3, 8190–8197 (2020). https://doi.org/10.1021/acsaem.0c00392

    Article  Google Scholar 

  31. Wang, X.; Liu, L.; Wang, X.; Yi, L.; Hu, C.; Zhang, X.: Mn2O3/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors. Mater. Sci. Eng. B 176, 1232–1238 (2011). https://doi.org/10.1016/j.mseb.2011.07.003

    Article  Google Scholar 

  32. Amirtharaj, S.N.; Mariappan, M.: Rapid and controllable synthesis of Mn2O3 nanorods via a sonochemical method for supercapacitor electrode application. Appl. Phys. A 127, 607 (2021). https://doi.org/10.1007/s00339-021-04774-5

    Article  Google Scholar 

  33. Kharade, P.M.; Kulkarni, S.B.; Salunkhe, D.J.: Nanoflakes like hydrophilic Mn2O3 thin film as a supercapacitor electrode. Chinese J. Phys. 55, 1684–1689 (2017). https://doi.org/10.1016/j.cjph.2017.05.019

    Article  Google Scholar 

  34. Javed, M.S.; Shah, H.U.; Shaheen, N.; Lin, R.; Qiu, M.; Xie, J.; Li, J.; Raza, R.; Mai, W.; Hu, C.: High energy density hybrid supercapacitor based on 3D mesoporous cuboidal Mn2O3 and MOF-derived porous carbon polyhedrons. Electrochim. Acta 282, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.06.009

    Article  Google Scholar 

  35. Son, Y.H.; Bui, P.T.; Lee, H.R.; Akhtar, M.S.; Shah, D.K.; Yang, O.B.: A rapid synthesis of mesoporous Mn2O3 nanoparticles for supercapacitor applications. Coatings 9(10), 631 (2019). https://doi.org/10.3390/coatings9100631

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to the Centennial Physics Ph.D Instrumentation Centre Department of Physics, Loyola College, Chennai 600034, India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Victor Antony Raj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There is no conflict of Interest.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joysi, M.G., Senthil, S., Jennifer, P.J.S. et al. Manganese Oxide-Enriched Copper Oxide (Mn2O3/CuO) Nanocomposite Electrodes for Supercapacitor Application. Arab J Sci Eng 49, 10095–10105 (2024). https://doi.org/10.1007/s13369-024-08860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-024-08860-7

Keywords

Navigation