[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO2/NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO2/NiO nanocomposite electrode material as a supercapacitor. The MnO2/NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg−1 at the discharge current density rate of 0.5 Ag−1 using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO2/NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO2/NiO electrode material shown enhanced performance for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  Google Scholar 

  2. M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7, 12647–12659 (2016)

    Article  Google Scholar 

  3. Y. Liu, B. Zhang, F. Wang, Z. Wen, Y. Wu, Pure Appl. Chem. 86, 593–609 (2014)

    Google Scholar 

  4. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  5. H.B. Wu, G. Zhang, L. Yu, X.W. Lou, Nanoscale Horiz. 1, 27–40 (2016)

    Article  Google Scholar 

  6. A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery. CRC Press, Taylor & Francis Group (2013)

  7. M.S. Nooshabadi, F. Zahedi, Electrochim. Acta 245, 575–586 (2017)

    Article  Google Scholar 

  8. Z. L.Deng, J. Hao, Wang et al., Electrochim. Acta 89, 191–198 (2013)

    Article  Google Scholar 

  9. L. Zhao, J. Yu, W. Li, S. Wang, C. Dai, J. Wu, X. Bai, C. Zhi, Nano Energy 4, 39–48 (2014)

    Article  Google Scholar 

  10. C.-L. Tang, X. Wei, Y.-M. Jiang, X.-Y. Wu, L.N. Han, K.-X. Wang, J.-S. Chen, J. Phys. Chem. C 119, 8465–8471 (2015)

    Article  Google Scholar 

  11. S.J. Zhu, J.Q. Jia, T. Wang, D. Zhao, J. Yang, F. Dong, Z.G. Shang, Y.X. Zhang, Chem. Commun. (2015). https://doi.org/10.1039/c5cc03976b

    Google Scholar 

  12. Y. Hu, J. Wang, J. Power Sources 286, 394–399 (2015)

    Article  Google Scholar 

  13. W. Li, K. Xu, B. Li, J. Sun, F. Jiang, Z. Yu, R. Zou, Z. Chen, J. Hu, ChemElectroChem 1, 1003–1008 (2014)

    Article  Google Scholar 

  14. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Energy Environ. Sci. 4, 2915–2921 (2011)

    Article  Google Scholar 

  15. K. Xiao, J.-W. Li, G.-F. Chen, Z.-Q. Liu, N. Li, Y.-Z. Su, Electrochim. Acta 149, 341–348 (2014)

    Article  Google Scholar 

  16. C. Wang, Y. Zhan, L. Wu, Y. Li, J. Liu, Nanotechnology 25, 305401 (2014)

    Article  Google Scholar 

  17. L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Adv. Mater. 25, 4746–4752 (2013)

    Article  Google Scholar 

  18. J. Liu, M. Jiang, H.J. Bosman, Fan, J. Mater. Chem. 22, 2419–2426 (2012)

    Article  Google Scholar 

  19. S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, ACS Appl. Mater. Interfaces 5, 1596–1603 (2013)

    Article  Google Scholar 

  20. X. Zhao, L. Zhang, S. Murali, M.D. Stoller, Q. Zhang, Y. Zhu, R.S. Ruoff, ACS Nano 6, 5404–5412 (2012)

    Article  Google Scholar 

  21. J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23, 2076–2081 (2011)

    Article  Google Scholar 

  22. J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Angew. Chem. Int. Ed. 125, 1708–1711 (2013)

    Article  Google Scholar 

  23. C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, L.F. Shen, J. Mater. Chem. 19, 5772–5777 (2009)

    Article  Google Scholar 

  24. Y. Qian, R. Liu, Q.F. Wang, J. Xu, D. Chen, G.Z. Shen, J. Mater. Chem. A 2, 10917–10922 (2014)

    Article  Google Scholar 

  25. J.P. Liu, J. Jiang, M. Bosman, H.J. Fan, J. Mater. Chem. 22, 2419–2426 (2012)

    Article  Google Scholar 

  26. Y.H. Li, H.R. Peng, C. Zhang, M.S. Chu, P. Xiao, Y.H. Zhang, RSC Adv. 5, 77115–77121 (2015)

    Article  Google Scholar 

  27. J. Chen, Y. Huang, C. Li, X. Chen, X. Zhang, Appl. Surf. Sci. 360, 534–539 (2016)

    Article  Google Scholar 

  28. Y. Bi, A. Nautiyal, H. Zhang, J. Luo, X. Zhang, Electrochim. Acta 260, 952–958 (2018)

    Article  Google Scholar 

  29. S. Xi, Y. Zhu, Y. Yang, S. Jiang, Z. Tang, Nanoscale Res. Lett. 12, 171 (2017)

    Article  Google Scholar 

  30. H. Wang, X. Fan, X. Zhang, Y. Huang, Q. Wu, Q. Pan, Q. Li, RSC Adv. 7, 23328 (2017)

    Article  Google Scholar 

  31. S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R.S. Ruoff, F. Dong, ACS Nano 12(2), 1033–1042 (2018)

    Article  Google Scholar 

  32. M. Ma, Y. Zhang, W. Yu, H.Y. Shen, H.Q. Zhang, N. Gu, Colloids Surf. A 212, 219 (2003)

    Article  Google Scholar 

  33. X. Zhang, Q. Wang, J. Zhang, J. Wang, M. Guo, S. Chen, C. Li, C. Hu, Y. Xie, RSC Adv. 5, 89976–89984 (2015)

    Article  Google Scholar 

  34. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, J. Mater. Sci. Mater. Electron. 29(17), 15006–15021 (2018)

    Article  Google Scholar 

  35. A.P. Amaliya, S. Anand, S. Pauline, J. Magn. Magn. Mater. 467, 14–28 (2018)

    Article  Google Scholar 

  36. L.H. Bao, J.F. Zang, X.D. Li, Nano Lett. 11, 1215 (2011)

    Article  Google Scholar 

  37. J.-H. Kim, K. Zhu, Y.F. Yan, C.L. Perkins, A. Frank, Nano Lett. 10, 4099 (2010)

    Article  Google Scholar 

  38. H. Kim, B.N. Popov, J. Electrochem. Soc. 150, D56 (2003)

    Article  Google Scholar 

  39. H. Wei, J. Wang, L. Yu, Y. Zhang, D. Hou, T. Li, Ceram. Int. 42(13), 14963–14969 (2016)

    Article  Google Scholar 

  40. Y. Haldorai, K. Giribabu, S.K. Hwang, C.H. Kwak, Y.S. Huh, Y.K. Han, Electrochim. Acta 222, 717–727 (2016)

    Article  Google Scholar 

  41. J. Zhong, F. Yi, A. Gao, D. Shu, Y. Huang, Z. Li, W. Zhu, C. He, T. Meng, S. Zhao, ChemElectroChem. 4, 1088–1094 (2017)

    Article  Google Scholar 

  42. K.O. Oyedotun, M.J. Madito, D.Y. Momodu, A.A. Mirghni, T.M. Masikhwa, N. Manyala, Chem. Eng. J. 335, 416–433 (2018)

    Article  Google Scholar 

  43. Y. Chen, C. Hu, Electrochem. Solid-State Lett. 6, 210–213 (2003)

    Article  Google Scholar 

  44. J. Zhou, X. Shen, M. Jing, J. Mater. Sci. Technol. 22, 803–806 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Victor Antony Raj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Racik, K.M., Guruprasad, K., Mahendiran, M. et al. Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability. J Mater Sci: Mater Electron 30, 5222–5232 (2019). https://doi.org/10.1007/s10854-019-00821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00821-3

Navigation