[go: up one dir, main page]

Skip to main content
Log in

Effects of Fe Doping on Preparation of Ti-Si Porous Membrane via In Situ Reactive Process

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Asymmetric porous filter elements can reach a high filtering accuracy with a larger filtration flux, which can enhance the filtration efficiency and reduce the energy consumption when applied in separation equipment. A novel porous material of Ti-Si intermetallic compound micro-porous membrane has been successfully synthesized with Fe-doped Ti mixed powder and SiO2 by the in situ reactive sintering process. The effects of Fe doping amount on the formation of the membrane has been systemically studied. The results show that increasing the Fe doping amount can improve the in situ reactive process and promote membrane formation. The synthesized granules on the membrane are well distributed, with an average size of 1–3 µm, and the average thickness of the membranes is 4–7 µm. The relative air permeability coefficient of the porous membrane reduces with the increasing Fe doping amount. All the synthesized membranes show the presence of Ti5Si3 and Ti phases, with small amounts of FeTi and FeO. The membrane formation mechanism is due to the large reduction reactivity of Fe-doped Ti powder with SiO2, and, finally, the asymmetric porous structure of Ti5Si3/Ti was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Goodall, Advances in Powder Metallurgy, ed. by I. Chang, Y. Zhao (Woodhead Publishing, 2013), pp. 273–307.

  2. J. Qin, Q. Chen, C. Yang, and Y. Huang, J. Alloys Compd. 654, 39 https://doi.org/10.1016/j.jallcom.2015.09.148 (2016).

    Article  Google Scholar 

  3. L. Pugliese, M. De Biase, F. Chidichimo, G.J. Heckrath, B.V. Iversen, C. Kjærgaard, and S. Straface, Ecol. Eng. 156, 105968 https://doi.org/10.1016/j.ecoleng.2020.105968 (2020).

    Article  Google Scholar 

  4. T. Arumugham, N.J. Kaleekkal, S. Gopal, J. Nambikkattu, K. Rambabu, A.M. Aboulella, S. Ranil Wickramasinghe, and F. Banat, J. Environ. Manag. 293, 112925 https://doi.org/10.1016/j.jenvman.2021.112925 (2021).

    Article  Google Scholar 

  5. H. Singh, P. Saxena, and Y.M. Puri, CIRP J. Manuf. Sci. Technol. 33, 339 https://doi.org/10.1016/j.cirpj.2021.03.014 (2021).

    Article  Google Scholar 

  6. Y. Jiang, Y. He, and H. Gao, J. Mater. Sci. Technol. 74, 89 https://doi.org/10.1016/j.jmst.2020.10.007 (2021).

    Article  Google Scholar 

  7. W. Liu and N. Canfield, J. Membr. Sci. 409–410, 113 https://doi.org/10.1016/j.memsci.2012.03.041 (2012).

    Article  Google Scholar 

  8. Y.-B. Kim, K. Lee, and J.-H. Chung, J. Membr. Sci. 209, 233 https://doi.org/10.1016/S0376-7388(02)00347-2 (2002).

    Article  Google Scholar 

  9. H. Bai, X. Qian, J. Fan, Y. Qian, Y. Liu, Y. Duo, C. Guo, and X. Wang, Sep. Purif. Technol. 236, 116037 https://doi.org/10.1016/j.seppur.2019.116037 (2020).

    Article  Google Scholar 

  10. S. Heidenreich, Fuel 104, 83 https://doi.org/10.1016/j.fuel.2012.07.059 (2013).

    Article  Google Scholar 

  11. M. Katoh, T. Ueshima, M. Takatani, H. Sugiura, K. Ominami, and S. Sugiyama, Sci. Rep. 10, 5148 https://doi.org/10.1038/s41598-020-62054-3 (2020).

    Article  Google Scholar 

  12. W.A. Meulenberg, J. Mertens, M. Bram, H.-P. Buchkremer, and D. Stöver, J. Eur. Ceram. Soc. 26, 449 https://doi.org/10.1016/j.jeurceramsoc.2005.06.035 (2006).

    Article  Google Scholar 

  13. H. Zhang, H. Gao, H. Yu, L. Wang, X. Liu, J. Ma, N. Zhang, Y. He, and Y. Jiang, Mater. Chem. Phys. 249, 123013 https://doi.org/10.1016/j.matchemphys.2020.123013 (2020).

    Article  Google Scholar 

  14. H. Wang, X. Hu, Z. Ke, C.Z. Du, L. Zheng, C. Wang, and Z. Yuan, Nanoscale Res. Lett. 13, 284 https://doi.org/10.1186/s11671-018-2693-0 (2018).

    Article  Google Scholar 

  15. Y.H. He, in Chapter 15 - Metal Membranes, ed. by L.Y. Jiang, N. Li Membr-Based Sep Metall (Elsevier, Amsterdam, 2017), pp. 371–390.

  16. X. Lin, E. Shamsaei, B. Kong, J.Z. Liu, T. Xu, and H. Wang, J. Mater. Chem. A 3, 24000 https://doi.org/10.1039/c5ta05185a (2015).

    Article  Google Scholar 

  17. H. Guo, X. Bi, S. Gong, and H. Xu, Scr. Mater. 44, 683 https://doi.org/10.1016/S1359-6462(00)00646-1 (2001).

    Article  Google Scholar 

  18. E. Levänen, T. Mäntylä, P. Mikkola, and J.B. Rosenholm, J. Colloid Interface Sci. 230, 186 https://doi.org/10.1006/jcis.2000.7018 (2000).

    Article  Google Scholar 

  19. S. Zhou, Y. Fan, Y. He, and N. Xu, J. Membr. Sci. 325, 546 https://doi.org/10.1016/j.memsci.2008.08.024 (2008).

    Article  Google Scholar 

  20. Y. Jiang, C. Deng, Y. He, Y. Zhao, N. Xu, J. Zou, B. Huang, and C.T. Liu, Mater. Lett. 63, 22 https://doi.org/10.1016/j.matlet.2008.08.053 (2009).

    Article  Google Scholar 

  21. H. Ran, J. Niu, B. Song, X. Wang, P. Feng, J. Wang, Y. Ge, and A. Farid, J. Alloys Compd. 612, 337 https://doi.org/10.1016/j.jallcom.2014.05.216 (2014).

    Article  Google Scholar 

  22. A. Knaislová, V. Šimůnková, P. Novák, F. Průša, M. Cabibbo, L. Jaworska, and D. Vojtěch, J. Alloys Compd. 868, 159251 https://doi.org/10.1016/j.jallcom.2021.159251 (2021).

    Article  Google Scholar 

  23. W. Du, Z. Yao, X. Tao, Q. Zhang, C. Shu, Z. Wang, and S. Zhang, Powder Technol. 401, 117319 https://doi.org/10.1016/j.powtec.2022.117319 (2022).

    Article  Google Scholar 

  24. W.H. Lee, Y.W. Cheon, Y.H. Jo, J.G. Seong, Y.J. Jo, Y.H. Kim, M.S. Noh, H.G. Jeong, C.J. Van Tyne, and S.Y. Chang, Sci. World J. 2015, 815084 https://doi.org/10.1155/2015/815084 (2015).

    Article  Google Scholar 

  25. C.L. Yeh and W.E. Sun, J. Alloys Compd. 669, 66 https://doi.org/10.1016/j.jallcom.2016.01.236 (2016).

    Article  Google Scholar 

  26. P. Du, K. Li, B. Zhu, T. Xiang, and G. Xie, J. Mater. Res. Technol. 17, 1319 https://doi.org/10.1016/j.jmrt.2022.01.084 (2022).

    Article  Google Scholar 

  27. Y. Cao, C. Guo, Y. Yu, J. Ma, D. Wu, and Y. Zou, Vacuum 202, 111185 https://doi.org/10.1016/j.vacuum.2022.111185 (2022).

    Article  Google Scholar 

  28. M.T. Tanvir, T. Fujii, Y. Aoki, K. Fushimi, and H. Habazaki, Appl. Surf. Sci. 257, 8295 https://doi.org/10.1016/j.apsusc.2011.01.036 (2011).

    Article  Google Scholar 

  29. J. Cheng, J. Qiao, Z. Yang, B. Zhu, J. Duan, D. Wang, R. Huang, Y. Zhang, Z. Zhou, and P. Dong, J. Alloys Compd. 890, 161732 https://doi.org/10.1016/j.jallcom.2021.161732 (2022).

    Article  Google Scholar 

  30. Z. Liu, B. Gao, Y. Liu, S. Ji, and Q. Ao, J. Alloys Compd. 899, 163405 https://doi.org/10.1016/j.jallcom.2021.163405 (2022).

    Article  Google Scholar 

  31. Z. Liu, Z. Liu, S. Ji, Y. Liu, and Y. Jing, Mater. Lett. 271, 127786 https://doi.org/10.1016/j.matlet.2020.127786 (2020).

    Article  Google Scholar 

  32. Z. Liu, Z. Liu, S. Ji, and G. Wang, Sci. Rep. 10, 16750 https://doi.org/10.1038/s41598-020-73869-5 (2020).

    Article  Google Scholar 

  33. H.Y. Wang, S.J. Lü, W. Xiao, G.J. Liu, J.G. Wang, and Q.C. Jiang, J. Am. Ceram. Soc. 96, 950 https://doi.org/10.1111/jace.12079 (2013).

    Article  Google Scholar 

  34. H.Y. Wang, S.J. Lü, M. Zha, S.T. Li, C. Liu, and Q.C. Jiang, Mater. Chem. Phys. 111, 463 https://doi.org/10.1016/j.matchemphys.2008.04.047 (2008).

    Article  Google Scholar 

  35. Q.L. Guan, H.Y. Wang, S.L. Li, W.N. Zhang, S.J. Lü, and Q.C. Jiang, J. Alloys Compd. 456, 79 https://doi.org/10.1016/j.jallcom.2007.02.009 (2008).

    Article  Google Scholar 

  36. J.I. Goldstein, S.K. Choi, F.J.J. Van Loo, G.F. Bastin, and R. Metselaar, J. Am. Ceram. Soc. 78, 313 https://doi.org/10.1111/j.1151-2916.1995.tb08802.x (1995).

    Article  Google Scholar 

  37. K. Maex, Mater. Sci. Eng. 11, vii https://doi.org/10.1016/0927-796X(93)90001-J (1993).

    Article  Google Scholar 

  38. C.Y. Ting, M. Wittmer, S.S. Iyer, and S.B. Brodsky, J. Electrochem. Soc. 131, C86 (Meeting Abstract) (1984).

    Article  Google Scholar 

  39. G.J.P. Krooshof, F.H.P.M. Habraken, WFvd Weg, LVd. Hove, K. Maex, and R.F.D. Keersmaecker, J. Appl. Phys. 63, 5110 https://doi.org/10.1063/1.340411 (1988).

    Article  Google Scholar 

  40. O. Park, J. Lee, M. Chun, J.-T. Yeon, S. Yoo, S. Choi, N. Choi, and S. Park, RSC Adv. 3, 2538 (2013).

    Article  Google Scholar 

  41. M. Hannula, H. Ali-Löytty, K. Lahtonen, J. Saari, A. Tukiainen, and M. Valden, Acta Mater. 174, 237 https://doi.org/10.1016/j.actamat.2019.05.032 (2019).

    Article  Google Scholar 

  42. B. Bharti, S. Kumar, H.-N. Lee, and R. Kumar, Sci. Rep. 6, 32355 https://doi.org/10.1038/srep32355 (2016).

    Article  Google Scholar 

  43. D.V. Shtansky, I.V. Lyasotsky, N.B. D’Yakonova, F.V. Kiryukhantsev-Korneev, S.A. Kulinich, E.A. Levashov, and J.J. Moore, Surf. Coat. Technol. 182, 204 https://doi.org/10.1016/j.surfcoat.2003.08.052 (2004).

    Article  Google Scholar 

  44. Y. Zhang, X. Li, D. Chen, N. Ma, X. Hua, and H. Wang, Scr. Mater. 60, 543 https://doi.org/10.1016/j.scriptamat.2008.12.004 (2009).

    Article  Google Scholar 

  45. Z. Jiang, X. Dai, and H. Middleton, Mater. Sci. Eng. B 176, 79 https://doi.org/10.1016/j.mseb.2010.09.006 (2011).

    Article  Google Scholar 

  46. A. Fujishima, T.N. Rao, and D.A. Tryk, J. Photochem. Photobiol. C 1, 1 https://doi.org/10.1016/S1389-5567(00)00002-2 (2000).

    Article  Google Scholar 

  47. Z. Wang, B. Peng, L. Zhang, Z. Zhao, D. Liu, N. Peng, D. Wang, Y. He, Y. Liang, and H. Liu, JOM 70, 539 https://doi.org/10.1007/s11837-017-2699-6 (2018).

    Article  Google Scholar 

  48. S.M. Glasauer, P. Hug, P.G. Weidler, and A.U. Gehring, Clays Clay Miner. 48, 51 (2000).

    Article  Google Scholar 

  49. Y. Ouyang, Y. Liu, R. Zhu, F. Ge, T. Xu, Z. Luo, and L. Liang, Miner. Eng. 72, 57 https://doi.org/10.1016/j.mineng.2014.12.020 (2015).

    Article  Google Scholar 

  50. M. Gettings and A.J. Kinloch, J. Mater. Sci. 12, 2511 https://doi.org/10.1007/BF00553938 (1977).

    Article  Google Scholar 

  51. G. Capannelli, F. Vigo, and S. Munari, J. Membr. Sci. 15, 289 https://doi.org/10.1016/S0376-7388(00)82305-4 (1983).

    Article  Google Scholar 

  52. A. Bottino, G. Capannelli, P. Petit-bon, N. Cao, M. Pegoraro, and G. Zoia, Sep. Sci. Technol. 26, 1315 https://doi.org/10.1080/01496399108050534 (1991).

    Article  Google Scholar 

  53. K. Zhu, L. Cao, J. Wang, W. Ma, K. Wei, and L. Zhou, J. Alloys Compd. 906, 163989 https://doi.org/10.1016/j.jallcom.2022.163989 (2022).

    Article  Google Scholar 

  54. B. Shen, Y. He, W. Li, Z. Wang, L. Yu, Y. Jiang, X. Liu, J. Kang, H. Gao, and N. Lin, Mater Des 191, 108645 https://doi.org/10.1016/j.matdes.2020.108645 (2020).

    Article  Google Scholar 

  55. D. Wang, S. Yang, J. Zheng, H. Hu, X. Liu, and C. Wang, J. Phase Equilib. Diffus. 38, 865 https://doi.org/10.1007/s11669-017-0593-0 (2017).

    Article  Google Scholar 

  56. M. Perrier, A. Deschamps, O. Bouaziz, Y. Brechet, F. Danoix, F. De Geuser, P. Donnadieu, K. Hoummada, and P. Maugis, Metall. Mater. Trans. A 43, 4999 https://doi.org/10.1007/s11661-012-1337-8 (2012).

    Article  Google Scholar 

  57. F. Weitzer, J.C. Schuster, M. Naka, F. Stein, and M. Palm, Intermetallics 16, 273 https://doi.org/10.1016/j.intermet.2007.10.006 (2008).

    Article  Google Scholar 

  58. V. Raghavan, J. Phase Equilib. Diffus. 30, 393 https://doi.org/10.1007/s11669-009-9555-5 (2009).

    Article  Google Scholar 

  59. D.H. Jack and F. Guiu, J. Mater. Sci. 10, 1161 https://doi.org/10.1007/BF00541398 (1975).

    Article  Google Scholar 

  60. A.E. Morgan, E.K. Broadbent, K.N. Ritz, D.K. Sadana, and B.J. Burrow, J. Appl. Phys. 64, 344 https://doi.org/10.1063/1.341434 (1988).

    Article  Google Scholar 

  61. G.J.P. Krooshof, F.H.P.M. Habraken, WFvd Weg, LVd. Hove, K. Maex, and R.F.D. Keersmaecker, J. Appl. Phys. 63, 5104 https://doi.org/10.1063/1.340410 (1988).

    Article  Google Scholar 

  62. M. Berti, A.V. Drigo, C. Cohen, J. Siejka, G.G. Bentini, R. Nipoti, and S. Guerri, J. Appl. Phys. 55, 3558 https://doi.org/10.1063/1.332946 (1984).

    Article  Google Scholar 

Download references

Acknowledgment

This research was financially supported by the National Natural Science Foundation of P. R. China (Grant No. 51704239), the Innovation Team Foundation by Xi’an Shiyou University (Grant No. 2019NKYCXTD12), Scientific Research Plan of Shaanxi Provincial Education Department (Grant No. 20JC028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongjun Liu or Qingbo Ao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Su, Y., Zhao, H. et al. Effects of Fe Doping on Preparation of Ti-Si Porous Membrane via In Situ Reactive Process. JOM 75, 3413–3423 (2023). https://doi.org/10.1007/s11837-023-05947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05947-8

Navigation