[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a deterministic remote state preparation (RSP) scheme for preparing an arbitrary (including pure and mixed) qubit, where a partially entangled state and finite classical communication are used. To our knowledge, our scheme is the first RSP scheme that fits into this category. One other RSP scheme proposed by Berry shares close features, but can only be used to prepare an arbitrary pure qubit. Even so, our scheme saves classical communication by approximate 1 bit per prepared qubit under equal conditions. When using a maximally entangled state, the classical communication for our scheme is 2 bits, which agrees with Lo’s conjecture on the resource cost. Furthermore Alice can switch between our RSP scheme and a standard teleportation scheme without letting Bob know, which makes the quantum channel multipurpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Shor, Peter W., Preskill, John: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59, 2825 (2014)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  8. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. Chin. Phys. Mech. Astron. 57, 1696 (2014)

    Article  ADS  Google Scholar 

  9. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. Chin. Phys. Mech. Astron. 57, 1238 (2014)

    Article  ADS  Google Scholar 

  10. Chang, Y., Xu, C., Zhang, S., Yan, L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59, 2541 (2014)

    Article  Google Scholar 

  11. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14, 739 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  14. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  16. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  17. Luo, M.X., Deng, Y., Chen, X.B., Yang, Y.X.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12, 279 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  19. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  20. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  21. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  22. Killoran, N., Biggerstaff, D.N., Kaltenbaek, R., Resch, K.J., Ltkenhaus, N.: Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states. Phys. Rev. A 81, 012334 (2010)

    Article  ADS  Google Scholar 

  23. Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)

    Article  ADS  Google Scholar 

  24. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  25. Berry, D.W.: Resources required for exact remote state preparation. Phys. Rev. A 70, 062306 (2004)

    Article  ADS  Google Scholar 

  26. Hua, C., Chen, Y.X.: A scheme for remote state preparation of a general pure qubit with optimized classical communication cost. Quantum Inf. Process. 14, 1069 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ahnert, S.E., Payne, M.C.: General implementation of all possible positive-operator-value measurements of single-photon polarization states. Phys. Rev. A 71, 012330 (2005)

    Article  ADS  Google Scholar 

  28. Paris, M.G.A.: The modern tools of quantum mechanics. Eur. Phys. J. Spec. Top. 203, 61 (2012)

    Article  Google Scholar 

  29. Zheng, X., Ennis, R., Richards, G.P., Palffy-Muhoray, P.: A plane sweep algorithm for the Voronoi tessellation of the sphere. Electron.-Liq. Cryst. Commun. 1 (2001). http://www.e-lc.org/tmp/Xiaoyu__Zheng_2011_12_05_14_35_11.pdf

  30. Optimal Ordering of Diffusion MRI Measurements and Related Problems—HI-SPEED Software Packets @ONLINE. https://sites.google.com/site/hispeedpackets/Home/optimalorderings

  31. Koay, C.G.: A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere. J. Comput. Sci. 2, 377 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Cheng Guan Koay and Lin Chen for valuable discussion. We also gratefully acknowledge the support by NNSF of China, Grant No. 11375150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xin Chen.

Appendix: Uniform distribution of antipodally symmetric points on the unit sphere

Appendix: Uniform distribution of antipodally symmetric points on the unit sphere

On a sphere, point sets with antipodal symmetry have special importance in both scientific and engineering fields, many works has been published for generating such sets. The methods for generating a 2K-element set with antipodal symmetry usually contain a minimization procedure of electrostatic potential energy. For the number of elements within a few hundreds, the point sets are tabulated online [30]. However, for the number of points in these point sets beyond a few hundreds, the optimization procedure will become unwieldy. To solve this problem, we can use instead some constructive methods to generate nearly uniform point sets with antipodal symmetry, which give very close results especially when K is large. In this work for generating antipodally symmetric point sets with \(K\ge 256\) , we use a simple deterministic points construction scheme proposed by Koay [31]. For the unit sphere, the spherical coordinates \(\left( 1,\theta _i,\phi _{i,j}\right) \) of the points on the upper hemisphere are given by:

$$\begin{aligned} \theta _i&=\left( i-\frac{1}{2}\right) \frac{\pi }{[N]},&i&=1,2,\ldots ,[N],\\ \phi _{i,j}&=\left( j-\frac{1}{2}\right) \frac{2\pi }{K_i},&j&=1,2,\ldots ,K_i. \end{aligned}$$

where N is the solution to \(N=\frac{K}{2}\sin {\frac{\pi }{4N}}\), \([\cdot ]\) is the function which gives the integer closest to the input, and

$$\begin{aligned} K_i= {\left\{ \begin{array}{ll} \left[ \frac{2 \pi \sin \theta _i}{\pi \csc {\frac{\pi }{4[N]}}}K\right] , &{}i=1,2,\ldots ,[N]-1,\\ K-\sum \nolimits _{i=1}^{[N]-1}K_i, &{}i=[N]. \end{array}\right. } \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, C., Chen, YX. Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication. Quantum Inf Process 15, 4773–4783 (2016). https://doi.org/10.1007/s11128-016-1423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1423-8

Keywords