Abstract
In this paper, an efficient proposal for quantum controlled teleporatation of arbitrary multi-qubit states is presented via three-qubit non-maximally entangled states. The successful probability is viewed as one of the most important performance parameters for quantum teleportation. The significant advantage of our scheme is that the successful probability is independent of the coefficients of partially entangled states, and is always equal to 100% in spite of using non-maximally quantum channel. From the concrete implementation processes of this proposal, it could be found that only the usual Bell-state measurement, simple single-qubit projective measurement and common single-qubit local unitary operations, of which the physical realization has been widely explored, need to be performed without the introduction of auxiliary particles.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dada, A., Leach, J., Buller, G., Padgett, M., Andersson, E.: Nat. Phys. 7, 677–680 (2011)
Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: IEEE Trans. Autom. Control 55, 619 (2010)
Wei, J.H., Qi, B., Dai, H.Y., Huang, J.H., Zhang, M.: IET Control Theory Appl. 9, 2500 (2015)
Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Nature 390, 575 (1997)
Xia, Y., Song, J., Lu, P.M., Song, H.S.: J. Appl. Phys. 109, 103111 (2011)
Situ, H.Z.: Int. J. Theor. Phys. 53, 1003 (2014)
Lo, H.K.: Phys. Rev. A 62, 012313 (2000)
Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Phys. Rev. Lett. 87, 077902 (2001)
Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Phys. Lett. A 355, 285 (2006)
Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Commun. Theor. Phys. 60, 313 (2013)
Wei, J.H., Dai, H.Y., Zhang, M.: Quantum Inf. Process. 13, 2115 (2014)
Xia, Y., Lu, P.M., Song, J., Song, H.S.: Int. J. Theor. Phys. 49, 2045 (2010)
Bennett, C.H., Wootters, W.K.: Phys. Rev. Lett. 69, 2881 (1992)
Situ, H.Z.: Int. J. Theor. Phys. 52, 3779 (2013)
Hao, J.C., Li, C.F., Guo, G.C.: Phys. Rev. A 63, 054301 (2001)
Situ, H.Z., Qiu, D.W.: J. Phys. A 43, 055301 (2010)
Huang, Z.M., Zhang, C., Situ, H.Z.: Quantum Inf. Process. 16, 227 (2017)
Situ, H.Z., Qiu, D.W., Mateus, P., Paunkovic, N.: Int. J. Quant. Inf. 13, 1550051 (2015)
Long, G.L., Liu, X.S.: Hys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)
Karlsson, A., Bourennane, M.: Phys. Rev. A 58, 4394 (1998)
Dai, H.Y., Li, C.Z., Chen, P.X.: Chin. Phys. Lett. 20, 1196 (2003)
Dai, H.Y., Chen, P.X., Li, C.Z.: Opt. Commun. 231, 281 (2004)
Dai, H.Y., Chen, P.X., Li, C.Z.: J. Opt. B 6, 106 (2004)
Wei, J.H., Dai, H.Y., Zhang, M.: Commun. Theor. Phys. 60, 651 (2013)
Wei, J.H., Shi, L., Han, C., Xu, Z.Y., Wang, G., Wu, H.: Quantum Inf. Process. 17, 82 (2018)
Tao, Y.H., Zheng, J.H.: Int. J. Theor. Phys. 52, 2001 (2013)
Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.: Int. J. Theor. Phys. 48, 1485 (2008)
Yan, F., Wang, D.: Phys. Lett. A 316, 297 (2003)
Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: J. Phys. A 40, 13121 (2007)
Wang, X.W., Su, Y.H., Yang, G.J.: Quantum Inf. Process. 8, 319 (2009)
Zhang, Z.J.: Phys. Lett. A 352, 55 (2006)
Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Int. J. Theor. Phys. 52, 1740 (2013)
Jiang, M., Dong, D.Y.: Quantum Inf. Process. 12, 237 (2013)
Dong, C., Zhao, S.H., Lei, S., Liu, Y.: Phys. Rev. A 93, 032320 (2016)
Dong, C., Zhao, S.H., Sun, Y.: Quantum Inf. Process. 14, 4575 (2015)
Sun, S.H., Liang, L.M.: Appl. Phys. Lett. 101, 071107 (2012)
Dong, C., Zhao, S.H., Deng, M.Y.: Quantum Inf. Process. 17, 50 (2018)
Zhang, M., Dai, H.Y., Zhu, X.C., Li, X.W., Hu, D.W.: Phys. Rev. A 73, 032101 (2006)
Zhang, M., Dai, H.Y., Xi, Z.R., Xie, H.W., Hu, D.W.: Phys. Rev. A 76, 042335 (2007)
Xia, Y., Song, J., Song, H.S.: Appl. Phys. Lett. 92, 021127 (2008)
Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Chin. Phys. B 17, 27 (2008)
Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Quantum Inf. Process. 11, 751 (2012)
Liu, B.Y., Zhang, M., Dai, H.Y., Chen, X.: Automatica 93, 183 (2018)
Chen, X., Dai, H.Y., Liu, B.Y., Zhang, M.: Phys. Lett. A 382, 942 (2018)
Yang, L., Chen, X., Zhang, M., Dai, H.Y.: Commun. Theor. Phys. 68, 641 (2017)
Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Quantum Inf. Process. 16, 24 (2017)
Acknowledgments
The authors thank K.H. Zhou, B.X. Zhao, H. Wu and J. Jiang for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61673389, 61703428, 61703420 and 61703422).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wei, J., Dai, HY., Shi, L. et al. Deterministic Quantum Controlled Teleportation of Arbitrary Multi-qubit States via Partially Entangled States. Int J Theor Phys 57, 3104–3111 (2018). https://doi.org/10.1007/s10773-018-3828-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10773-018-3828-x