[go: up one dir, main page]

Skip to main content
Log in

Deterministic Quantum Controlled Teleportation of Arbitrary Multi-qubit States via Partially Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, an efficient proposal for quantum controlled teleporatation of arbitrary multi-qubit states is presented via three-qubit non-maximally entangled states. The successful probability is viewed as one of the most important performance parameters for quantum teleportation. The significant advantage of our scheme is that the successful probability is independent of the coefficients of partially entangled states, and is always equal to 100% in spite of using non-maximally quantum channel. From the concrete implementation processes of this proposal, it could be found that only the usual Bell-state measurement, simple single-qubit projective measurement and common single-qubit local unitary operations, of which the physical realization has been widely explored, need to be performed without the introduction of auxiliary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dada, A., Leach, J., Buller, G., Padgett, M., Andersson, E.: Nat. Phys. 7, 677–680 (2011)

    Article  Google Scholar 

  2. Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: IEEE Trans. Autom. Control 55, 619 (2010)

    Article  Google Scholar 

  3. Wei, J.H., Qi, B., Dai, H.Y., Huang, J.H., Zhang, M.: IET Control Theory Appl. 9, 2500 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  6. Xia, Y., Song, J., Lu, P.M., Song, H.S.: J. Appl. Phys. 109, 103111 (2011)

    Article  ADS  Google Scholar 

  7. Situ, H.Z.: Int. J. Theor. Phys. 53, 1003 (2014)

    Article  Google Scholar 

  8. Lo, H.K.: Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  9. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  10. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  11. Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Commun. Theor. Phys. 60, 313 (2013)

    Article  ADS  Google Scholar 

  12. Wei, J.H., Dai, H.Y., Zhang, M.: Quantum Inf. Process. 13, 2115 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xia, Y., Lu, P.M., Song, J., Song, H.S.: Int. J. Theor. Phys. 49, 2045 (2010)

    Article  Google Scholar 

  14. Bennett, C.H., Wootters, W.K.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Situ, H.Z.: Int. J. Theor. Phys. 52, 3779 (2013)

    Article  Google Scholar 

  16. Hao, J.C., Li, C.F., Guo, G.C.: Phys. Rev. A 63, 054301 (2001)

    Article  ADS  Google Scholar 

  17. Situ, H.Z., Qiu, D.W.: J. Phys. A 43, 055301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Huang, Z.M., Zhang, C., Situ, H.Z.: Quantum Inf. Process. 16, 227 (2017)

    Article  ADS  Google Scholar 

  19. Situ, H.Z., Qiu, D.W., Mateus, P., Paunkovic, N.: Int. J. Quant. Inf. 13, 1550051 (2015)

    Article  Google Scholar 

  20. Long, G.L., Liu, X.S.: Hys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  21. Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  22. Karlsson, A., Bourennane, M.: Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dai, H.Y., Li, C.Z., Chen, P.X.: Chin. Phys. Lett. 20, 1196 (2003)

    Article  ADS  Google Scholar 

  24. Dai, H.Y., Chen, P.X., Li, C.Z.: Opt. Commun. 231, 281 (2004)

    Article  ADS  Google Scholar 

  25. Dai, H.Y., Chen, P.X., Li, C.Z.: J. Opt. B 6, 106 (2004)

    Article  ADS  Google Scholar 

  26. Wei, J.H., Dai, H.Y., Zhang, M.: Commun. Theor. Phys. 60, 651 (2013)

    Article  ADS  Google Scholar 

  27. Wei, J.H., Shi, L., Han, C., Xu, Z.Y., Wang, G., Wu, H.: Quantum Inf. Process. 17, 82 (2018)

    Article  ADS  Google Scholar 

  28. Tao, Y.H., Zheng, J.H.: Int. J. Theor. Phys. 52, 2001 (2013)

    Article  Google Scholar 

  29. Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.: Int. J. Theor. Phys. 48, 1485 (2008)

    Article  Google Scholar 

  30. Yan, F., Wang, D.: Phys. Lett. A 316, 297 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: J. Phys. A 40, 13121 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wang, X.W., Su, Y.H., Yang, G.J.: Quantum Inf. Process. 8, 319 (2009)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z.J.: Phys. Lett. A 352, 55 (2006)

    Article  ADS  Google Scholar 

  34. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Int. J. Theor. Phys. 52, 1740 (2013)

    Article  Google Scholar 

  35. Jiang, M., Dong, D.Y.: Quantum Inf. Process. 12, 237 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. Dong, C., Zhao, S.H., Lei, S., Liu, Y.: Phys. Rev. A 93, 032320 (2016)

    Article  ADS  Google Scholar 

  37. Dong, C., Zhao, S.H., Sun, Y.: Quantum Inf. Process. 14, 4575 (2015)

    Article  MathSciNet  Google Scholar 

  38. Sun, S.H., Liang, L.M.: Appl. Phys. Lett. 101, 071107 (2012)

    Article  ADS  Google Scholar 

  39. Dong, C., Zhao, S.H., Deng, M.Y.: Quantum Inf. Process. 17, 50 (2018)

    Article  ADS  Google Scholar 

  40. Zhang, M., Dai, H.Y., Zhu, X.C., Li, X.W., Hu, D.W.: Phys. Rev. A 73, 032101 (2006)

    Article  ADS  Google Scholar 

  41. Zhang, M., Dai, H.Y., Xi, Z.R., Xie, H.W., Hu, D.W.: Phys. Rev. A 76, 042335 (2007)

    Article  ADS  Google Scholar 

  42. Xia, Y., Song, J., Song, H.S.: Appl. Phys. Lett. 92, 021127 (2008)

    Article  ADS  Google Scholar 

  43. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Chin. Phys. B 17, 27 (2008)

    Article  ADS  Google Scholar 

  44. Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Quantum Inf. Process. 11, 751 (2012)

    Article  MathSciNet  Google Scholar 

  45. Liu, B.Y., Zhang, M., Dai, H.Y., Chen, X.: Automatica 93, 183 (2018)

    Article  Google Scholar 

  46. Chen, X., Dai, H.Y., Liu, B.Y., Zhang, M.: Phys. Lett. A 382, 942 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  47. Yang, L., Chen, X., Zhang, M., Dai, H.Y.: Commun. Theor. Phys. 68, 641 (2017)

    Article  ADS  Google Scholar 

  48. Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Quantum Inf. Process. 16, 24 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank K.H. Zhou, B.X. Zhao, H. Wu and J. Jiang for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61673389, 61703428, 61703420 and 61703422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Dai, HY., Shi, L. et al. Deterministic Quantum Controlled Teleportation of Arbitrary Multi-qubit States via Partially Entangled States. Int J Theor Phys 57, 3104–3111 (2018). https://doi.org/10.1007/s10773-018-3828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3828-x

Keywords