[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Controlled teleportation against uncooperation of part of supervisors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the teleportation of an unknown quantum state from a sender (Alice) to a receiver (Bob) via the control of many supervisors (Charlie 1, Charlie 2, . . .) in a network. It has been shown that such a task can be achieved by distributing a GHZ-type entangled state among the participants in advance. In the protocols with GHZ-type entanglement channel, the achievement of teleportation between Alice and Bob is conditioned on the cooperation of all the supervisors. In other words, if anyone of the supervisors does not cooperate, the teleportation will fails. In this paper, we introduce another kind of controlled teleportaton protocol with other types of entangled states acting as the quantum channel, in which the teleportation between Alice and Bob can be realized with high degree of endurance against uncooperation of part of supervisors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Gottesman D., Chuang I.L.: Quantum teleportation is a universal computational primitive. Nature 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  3. Knill E., Laflamme L., Miburn G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  4. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  5. Lund A.P., Ralph T.C., Haselgrove H.L.: Fault-tolerant linear optical quantum computing with small amplitude coherent states. Phys. Rev. Lett. 100, 030503-1–030503-4 (2008)

    ADS  Google Scholar 

  6. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  8. Li W.L., Li C.F., Guo G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301-1–034301-3 (2000)

    ADS  MathSciNet  Google Scholar 

  9. Agrawal P., Pati A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Bouwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  11. Nielsen M.A., Knill E., Laflamme R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998)

    Article  ADS  Google Scholar 

  12. Furusawa A., Sørensen J.L., Braustein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  13. Zhao Z., Chen Y.A., Zhang A.N., Yang T., Briegel H.J., Pan J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  14. Riebe M., Häffner H., Roos C.F., Hänsel W., Benhelm J., Lancaster G.P.T., Körber T.W., Becher C., Schmidt-Kaler F., James D.F.V., Blatt R.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  15. Barret M.D., Chiaverini J., Schaetz T., Britton J., Itano W.M., Jost J.D., Knill E., Langer C., Leibfried D., Ozeri R., Wineland D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  Google Scholar 

  16. Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502-1–060502-4 (2006)

    Article  ADS  Google Scholar 

  17. Wang X.W., Yang G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301-1–024301-4 (2008)

    ADS  Google Scholar 

  18. Karlsson A., Bourennane M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. Yang C.P., Chu S., Han S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329-1–022329-8 (2004)

    ADS  Google Scholar 

  22. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  23. Massar S., Popescu S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Yang C.P., Han S.: A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network. Phys. Lett. A 343, 267–273 (2005)

    Article  MATH  ADS  Google Scholar 

  25. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314-1–062314-12 (2000)

    ADS  Google Scholar 

  26. Gordon G., Rigolin G.: Generalized teleportation protocol. Phys. Rev. A 73, 042309-1–042309-4 (2006)

    ADS  Google Scholar 

  27. Bužek V., Hillery M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XW., Su, YH. & Yang, GJ. Controlled teleportation against uncooperation of part of supervisors. Quantum Inf Process 8, 319–330 (2009). https://doi.org/10.1007/s11128-009-0107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0107-z

Keywords

PACS