Abstract
Key message
Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool.
Abstract
Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.




Similar content being viewed by others
Change history
04 December 2020
Communication editor name should be: Jiankang Wang
References
Albrecht T (2014) Genome-based prediction of testcross performance in maize (Zea mays L.). Dissertation Technical University of Munich, Munich. https://mediatum.ub.tum.de/doc/1227384/1227384.pdf
Andjelkovic V, Ignjatovic-Micic D (2012) Maize genetic resources—science and benefits. Serbian Genetic Society, Belgrade. https://www.researchgate.net/publication/304056743_Maize_Genetic_Resources-Science_and_Benefits-
Barrière Y, Alber D, Dolstra O et al (2006) Past and prospects of forage maize breeding in Europe. II. History, germplasm evolution and correlative agronomic changes. Maydica 51:435–449
Böhm J, Schipprack W, Mirdita V et al (2014) Breeding potential of European flint maize landraces evaluated by their testcross performance. Crop Sci 54:1665–1672. https://doi.org/10.2135/cropsci2013.12.0837
Böhm J, Schipprack W, Utz HF, Melchinger AE (2017) Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Theor Appl Genet 130:861–873. https://doi.org/10.1007/s00122-017-2856-x
Brauner PC, Müller D, Schopp P et al (2018) Genomic prediction within and among doubled-haploid libraries from maize landraces. Genetics 210:1185–1196. https://doi.org/10.1534/genetics.118.301286
Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097. https://doi.org/10.1086/521987
Cochran WG, Cox GM (1957) Experimental designs, 2nd edn. Wiley, London
Dubreuil P, Charcosset A (1998) Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96:577–587. https://doi.org/10.1007/s001220050776
Fischer S, Melchinger AE, Korzun V et al (2010) Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor Appl Genet 120:291–299. https://doi.org/10.1007/s00122-009-1124-0
Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES et al (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334
Geiger HH, Melchinger AE, Schmidt GA (1986) Analysis of factorial crosses between flint and dent maize inbred lines for forage performance and quality traits. In: Proceeding of the 13th congress of the maize and sorghum section of EUCARPIA. Pudoc Press, Wageningen, pp 147–154
Geiger HH, Gordillo GA, Koch S (2013) Genetic correlations among haploids, doubled haploids, and testcrosses in maize. Crop Sci 53:2313–2320. https://doi.org/10.2135/cropsci2013.03.0163
Gorjanc G, Jenko J, Hearne SJ, Hickey JM (2016) Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genom 17:1–15. https://doi.org/10.1186/s12864-015-2345-z
Gouesnard B, Negro S, Laffray A et al (2017) Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Theor Appl Genet 130:2165–2189. https://doi.org/10.1007/s00122-017-2949-6
Grieder C, Mittweg G, Dhillon BS et al (2011) Determination of methane fermentation yield and its kinetics by near infrared spectroscopy and chemical composition in maize. J Near Infrared Spec 19:463–477. https://doi.org/10.1255/jnirs.959
Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012) Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance. Theor Appl Genet 124:981–988. https://doi.org/10.1007/s00122-011-1762-x
Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding, 3rd edn. Springer, New York
Han S, Miedaner T, Utz HF et al (2018) Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica 214:6. https://doi.org/10.1007/s10681-017-2090-2
Hölker A, Schipprack W, Molenaar W, Melchinger AE (2019) Progress for testcross performance within the flint heterotic pool of a public maize breeding program since the onset of hybrid breeding. Euphytica 215:50. https://doi.org/10.1007/s10681-019-2370-0
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Janick J, Caneva G (2005) The first images of maize in Europe. Maydica 50:71–80
Kurtz B, Gardner CAC, Millard MJ, Nickson T, Smith JSC (2016) Global access to maize germplasm provided by the US national plant germplasm system and by us plant breeders. Crop Sci Crop Sci 56:931–941. https://doi.org/10.2135/cropsci2015.07.0439
Laidig F, Piepho H-P, Drobek T, Meyer U (2014) Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theor Appl Genet 127:2599–2617. https://doi.org/10.1007/s00122-014-2402-z
Larièpe A, Moreau L, Laborde J et al (2017) General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Theor Appl Genet 130:403–417. https://doi.org/10.1007/s00122-016-2822-z
Lübberstedt T, Melchinger AE, Klein D et al (1997) QTL mapping in testcrosses of European flint lines of maize: II. Comparison of different testers for forage quality traits. Crop Sci 37:1913. https://doi.org/10.2135/cropsci1997.0011183x003700060041x
Martin M, Schipprack W, Miedaner T et al (2012) Variation and covariation for Gibberella ear rot resistance and agronomic traits in testcrosses of doubled haploid maize lines. Euphytica 185:441–451. https://doi.org/10.1007/s10681-012-0623-2
Mayer M, Unterseer S, Bauer E et al (2017) Is there an optimum level of diversity in utilization of genetic resources? Theor Appl Genet 130:2283–2295. https://doi.org/10.1007/s00122-017-2959-4
Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. CSSA, Madison, pp 99–118
Melchinger AE, Schmidt W, Geiger HH (1988) Comparison of testcrosses produced from F2 and first backcross populations in maize. Crop Sci 28:743. https://doi.org/10.2135/cropsci1988.0011183x002800050004x
Melchinger AE, Schopp P, Müller D et al (2017) Safeguarding our genetic resources with libraries of doubled-haploid lines. Genetics 206:1611–1619. https://doi.org/10.1534/genetics.115.186205
Menke KH, Raab L, Salewski A et al (1979) The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci Camb 93:217–222
Messmer MM, Melchinger AE, Boppenmaier J et al (1992) Relationships among early European maize inbreds: I. Genetic diversity among flint and dent lines revealed by RFLPs. Crop Sci 32:1301. https://doi.org/10.2135/cropsci1992.0011183x003200060001x
Messmer MM, Melchinger AE, Herrmann RG, Boppenmaier J (1993) Relationships among early European maize inbreds: II. Comparison of pedigree and RFLP data. Crop Sci 33:944. https://doi.org/10.2135/cropsci1993.0011183x003300050014x
Mihaljevic R, Schön CC, Utz HF, Melchinger AE (2005) Correlations and QTL correspondence between line per Se and testcross performance for agronomic traits in four populations of European maize. Crop Sci 45:114–122. https://doi.org/10.2135/cropsci2005.0114
Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518. https://doi.org/10.2307/2527650
Montes JM, Utz HF, Schipprack W et al (2006) Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters. Plant Breed 125:591–595. https://doi.org/10.1111/j.1439-0523.2006.01298.x
Piepho HP (2004) An algorithm for a letter-based representation of all-pairwise comparisons. J Comput Graph Stat 13:456–466. https://doi.org/10.1198/1061860043515
Pollak LM (2003) The history and success of the public–private project on germplasm enhancement of maize (GEM). Adv Agron 78:45–87
Prigge V, Babu R, Das B et al (2012) Doubled haploids in tropical maize: II. Quantitative genetic parameters for testcross performance. Euphytica 185:453–463
Pollmer WG, Phipps RH (1980) Improvement of quality traits of maize for grain and silage use. Martinus Nijhoff, Leiden
R Core Team (2017) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rebourg C, Chastanet M, Gouesnard B et al (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903. https://doi.org/10.1007/s00122-002-1140-9
Reif JC, Melchinger AE, Xia XC et al (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275. https://doi.org/10.2135/cropsci2003.1275
Reif JC, Hamrit S, Heckenberger M et al (2005a) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913. https://doi.org/10.1007/s00122-005-0016-1
Reif JC, Melchinger AE, Frisch M (2005b) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1. https://doi.org/10.2135/cropsci2005.0001
Riedelsheimer C, Technow F, Melchinger AE (2012) Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genom 13:452. https://doi.org/10.1186/1471-2164-13-452
Salhuana W, Pollak L (2006) Latin American Maize Project (LAMP) and Germplasm Enhancement of Maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–355
Schnell FW (1983) Probleme der Elternwahl—Ein Überblick. In: Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein, Austria. 22.–24. Nov. Verlag und Druck der Bundesanstalt für alpenländische Landwirtschaft, Austria, pp 1–11
Schnell FW (1992) Maiszüchtung und die Züchtungsforschung in der Bundesrepublik Deutschland. In: Vorträge Pflanzenzüchtung, pp 27–44
Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301
Shull GH (1909) A pure-line method in corn breeding. J Hered 5:51–58
Smith OS (1986) Covariance between line per se and testcross performance. Crop Sci 26:540. https://doi.org/10.2135/cropsci1986.0011183X002600030023x
Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State Univ Press, Ames
Späth HR (1973) Vergleich verschiedener Einfachkreuzungen als Komplementärmaterial für ein Hybridzuchtprogramm bei Mais. Dissertation University of Hohenheim, Hohenheim
Stacklies W, Redestig H, Scholz M et al (2007) pcaMethods a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167. https://doi.org/10.1093/bioinformatics/btm069
Stadler LJ (1944) Gamete selection in corn breeding. J Am Soc Agron 36:988–989
Stich B, Melchinger AE, Frisch M et al (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730. https://doi.org/10.1007/s00122-005-2057-x
Strigens A, Schipprack W, Reif JC, Melchinger AE (2013) Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS ONE 8(2):e57234. https://doi.org/10.1371/journal.pone.0057234
Tenaillon MI, Charcosset A (2011) A European perspective on maize history. C R Biol 334:221–228. https://doi.org/10.1016/j.crvi.2010.12.015
Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Utz HF (2011) A computer program for statistical analysis of plant breeding experiments. Version 3A: Univ. Hohenheim, Stuttgart
Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299. https://doi.org/10.1007/s00122-009-1256-2
Wilde K, Burger H, Prigge V et al (2010) Testcross performance of doubled-haploid lines developed from European flint maize landraces. Plant Breed 129:181–185. https://doi.org/10.1111/j.1439-0523.2009.01677.x
Yandell BS (1997) Practical data analysis for designed experiments. Chapman & Hall, London
Acknowledgements
We thank Willem Molenaar for valuable suggestions to improve the manuscript. We would also like to thank the technical staff from the University of Hohenheim for excellence in conducting the field experiments. We are indebted to KWS SAAT SE for the additional field experiment in Einbeck and Thomas Presterl and Theresa Bolduan for conducting it. This research was funded by the German Federal Ministry of Education and Research (BMBF) within the scope of the funding initiative MAZE “Plant Breeding Research for the Bioeconomy” (Funding ID: 031B0195).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Ethical standards
The experiments reported in this study comply with the current laws of Germany.
Additional information
Communicated by Jiankang Wang.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original article has been revised to update communicating editor as Jiankang Wang.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Brauner, P.C., Schipprack, W., Utz, H.F. et al. Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm. Theor Appl Genet 132, 1897–1908 (2019). https://doi.org/10.1007/s00122-019-03325-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00122-019-03325-0