Skip to main content
Claire Duchet
  • Branišovská 1760
    37005 Ceske Budejovice
    Czech Republic
Background/Question/Methods There is increasing evidence across many natural systems that high species diversity or community saturation can buffer against invasion or production of unwanted species while community simplification can have... more
Background/Question/Methods There is increasing evidence across many natural systems that high species diversity or community saturation can buffer against invasion or production of unwanted species while community simplification can have the opposite effect. Experimental manipulations of diversity gradients or gradients of other measures of food web complexity for effects on mosquitoes are rare. However, evidence for potential effects of species richness saturation or community simplification in mosquito breeding sites may be gleaned from disturbance studies. Disturbances, through community structure alteration, may then have residual effects on mosquito oviposition site selection and production. We very briefly survey existing literature for such evidence from various disturbances including desiccation, flash floods, eutrophication gradients, and residual effects of predators, and pesticides. We also consider two new disturbance experiments in outdoor artificial pools: 1) residual...
Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be... more
Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be used to follow the dynamics of arthropod populations. Here, chitobiase activity was used for monitoring the impact of mosquito candidate larvicides on Daphnia pulex and Daphnia magna under laboratory conditions. Both species were exposed to spinosad (2, 4, 8 μg L(-1)) and diflubenzuron (0.2, 0.4, 0.8 μg L(-1)) for 14 days. Bacillus thuringiensis var. israelensis (Bti; 0.25, 0.5, 1 μL L(-1)) was used as the reference larvicide. Chitobiase activity, adult survival, individual growth and fecundity, expressed as the number of neonates produced, were measured every 2 days. Average Exposure Concentrations of spinosad were ten-fold lower than the nominal concentrations, whereas only a slight deviation was observed for diflubenzuron. In contrast to Bti, spinosad and diflubenzuron significantly affected both species in terms of adult survival, and production of neonates. As compared to D. pulex, D. magna was more severely affected by diflubenzuron, at low and medium concentrations, with reduced adult growth and much lower chitobiase activity. Chitobiase activity was positively correlated with the individual body length, number of neonates produced between two consecutive observation dates, and number of females and neonates. In addition, the significant positive correlations between chitobiase activity measured on the last sampling date before the first emission of neonates and the cumulative number of neonates produced during the whole observation period strongly support the potential of the activity of this chitinolytic enzyme as a proxy for assessing the dynamics of arthropod populations exposed to larvicides used for mosquito control.
Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be... more
Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be used to follow the dynamics of arthropod populations. Here, chitobiase activity was used for monitoring the impact of mosquito candidate larvicides on Daphnia pulex and Daphnia magna under laboratory conditions. Both species were exposed to spinosad (2, 4, 8 μg L(-1)) and diflubenzuron (0.2, 0.4, 0.8 μg L(-1)) for 14 days. Bacillus thuringiensis var. israelensis (Bti; 0.25, 0.5, 1 μL L(-1)) was used as the reference larvicide. Chitobiase activity, adult survival, individual growth and fecundity, expressed as the number of neonates produced, were measured every 2 days. Average Exposure Concentrations of spinosad were ten-fold lower than the nominal concentrations, whereas only a slight deviation was observed for diflubenzuron. In contrast to Bti, spinosad and diflubenzuron significantly affected both species in terms of adult survival, and production of neonates. As compared to D. pulex, D. magna was more severely affected by diflubenzuron, at low and medium concentrations, with reduced adult growth and much lower chitobiase activity. Chitobiase activity was positively correlated with the individual body length, number of neonates produced between two consecutive observation dates, and number of females and neonates. In addition, the significant positive correlations between chitobiase activity measured on the last sampling date before the first emission of neonates and the cumulative number of neonates produced during the whole observation period strongly support the potential of the activity of this chitinolytic enzyme as a proxy for assessing the dynamics of arthropod populations exposed to larvicides used for mosquito control.
A new method is proposed that avoids manual counting of mosquito larvae in order to estimate larval abundance in the field. This method is based on the visual comparison between abundance, in a standardized sampling tray (called an... more
A new method is proposed that avoids manual counting of mosquito larvae in order to estimate larval abundance in the field. This method is based on the visual comparison between abundance, in a standardized sampling tray (called an abacus), with 5 (abacus 5) or 10 (abacus 10) diagrammatically prepared abundance classes. Accuracy under laboratory and field conditions and individual bias have been evaluated and both abaci provide a reliable estimation of abundance in both conditions. There is no individual bias, whether people are familiar or not with its use. They could also be used for a quick estimation of larval treatment effectiveness, for the study of population dynamics and spatial distribution.
The present study was undertaken to assess the impact of a candidate mosquito larvicide, spinosad (8, 17 and 33 microg L(-1)) on a field population of Daphnia magna under natural variations of water temperature and salinity, using Bti... more
The present study was undertaken to assess the impact of a candidate mosquito larvicide, spinosad (8, 17 and 33 microg L(-1)) on a field population of Daphnia magna under natural variations of water temperature and salinity, using Bti (0.16 and 0.50 microL L(-1)) as the reference larvicide. Microcosms (125 L) were placed in a shallow temporary marsh where D. magna was naturally present. The peak of salinity observed during the 21-day observation period may have been partly responsible for the decrease of daphnid population density in all the microcosms. It is also probably responsible for the absence of recovery in the microcosms treated with spinosad which caused a sharp decrease of D. magna abundance within the first two days following treatment whereas Bti had no effect. These results suggest that it may be difficult for a field population of daphnids to cope simultaneously with natural (water salinity and temperature) and anthropogenic (larvicides) stressors.
To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this... more
To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this raises the question of possible effects of mosquito larvicides on non-target aquatic species. Bacillus thuringiensis var. israelensis (Bti), which is well-known for its selectivity for Nematocera dipterans, is widely used for mosquito control all over the world. Spinosad, a mixture of spinosyns A and D known as fermentation products of a soil actinomycete (Saccharopolyspora spinosa), is a biological neurotoxic insecticide with a broader action spectrum. It is a candidate larvicide for mosquito control, but some studies showed that it may be toxic to beneficial or non-target species, including non-biting midges. The present study was therefore undertaken to assess the impact of Bti and spinosad on natural populations of Polypedilum nubifer (Skuse) and Ta...
Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be... more
Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be used to follow the dynamics of arthropod populations. Here, chitobiase activity was used for monitoring the impact of mosquito candidate larvicides on Daphnia pulex and Daphnia magna under laboratory conditions. Both species were exposed to spinosad (2, 4, 8 μg L(-1)) and diflubenzuron (0.2, 0.4, 0.8 μg L(-1)) for 14 days. Bacillus thuringiensis var. israelensis (Bti; 0.25, 0.5, 1 μL L(-1)) was used as the reference larvicide. Chitobiase activity, adult survival, individual growth and fecundity, expressed as the number of neonates produced, were measured every 2 days. Average Exposure Concentrations of spinosad were ten-fold lower than the nominal concentrations, whereas only a slight deviation was observed for diflubenzuron. In contrast to Bti, spinosad and diflubenzuron significantly affected both species in terms of adult survival, and production of neonates. As compared to D. pulex, D. magna was more severely affected by diflubenzuron, at low and medium concentrations, with reduced adult growth and much lower chitobiase activity. Chitobiase activity was positively correlated with the individual body length, number of neonates produced between two consecutive observation dates, and number of females and neonates. In addition, the significant positive correlations between chitobiase activity measured on the last sampling date before the first emission of neonates and the cumulative number of neonates produced during the whole observation period strongly support the potential of the activity of this chitinolytic enzyme as a proxy for assessing the dynamics of arthropod populations exposed to larvicides used for mosquito control.
Research Interests: