Skip to main content
<p>The hydrological regime of rivers in Luxembourg (Central Western Europe) is characterised by summer low flows and winter high... more
<p>The hydrological regime of rivers in Luxembourg (Central Western Europe) is characterised by summer low flows and winter high flows. In winter, large-scale floods are typically triggered by long-lasting sequences of precipitation events, related to westerly atmospheric fluxes that carry wet and temperate air masses from the Atlantic Ocean. In recent years, several flash flood events have been observed in Luxembourg. While being a common feature of Mediterranean river basins, this type of flooding events is uncommon at higher latitudes. The design of the hydro-meteorological monitoring and forecasting systems operated in Luxembourg is not adapted to this type of extreme events and there is a pressing need for a better mechanistic understanding of flash flood triggering mechanisms.</p><p>Here, we explore two lines of research – focusing on (i) the spatio-temporal variability of flash flood generation across a set of 41 nested catchments covering a wide range of physiographic settings (with mixed land use, soil types and bedrock geology) and (ii) the responsivity (resistance) and elasticity (resilience) of these catchments to global change.</p><p>Our area of interest is the Sûre River basin (4,240 km<sup>2</sup>), characterised by a homogenous climate (temperate oceanic), as well as various bedrock (e.g. sandstone, marls, shale) and land use (e.g. forests, grassland, crops, urban areas) types. Based on 8 years’ worth of daily hydrological data (precipitation, discharge and potential evapotranspiration) we computed the increments of the water balance to determine the maximum storage capacity and pre-event wetness state (expressed as storage deficit). Based on the relationship between storage deficit and discharge we first estimated total storage at nearly zero flow conditions. Second, we compared event runoff ratios (Q/P) to pre-hydrological states (as expressed to storage deficit prior to a rainfall-runoff event) in order to assess each catchment’s sensitivity to antecedent wetness conditions. Third, we assessed the responsivity (resistance) and elasticity (resilience) to climate variations – as expressed through the PET/P and AET/P deviations from the Budyko curve – for each individual catchment. Finally, we investigated potential physiographic controls on catchment responsivity and elasticity across our set of 41 nested catchments.</p>
<p>In recent years, flash floods occurred repeatedly in temperate regions of central Western Europe (e.g., Orlacher Bach (GER), Hupselsebeek (NL), White Ernz (LUX)). This type of extreme flood events is unusual for these regions, as... more
<p>In recent years, flash floods occurred repeatedly in temperate regions of central Western Europe (e.g., Orlacher Bach (GER), Hupselsebeek (NL), White Ernz (LUX)). This type of extreme flood events is unusual for these regions, as opposed to Mediterranean catchments that are more prone to flash floods. In the second half of the 20<sup>th</sup> century, and more specifically in the 1990’s, westerly atmospheric fluxes were the dominating triggering factor of large scale (winter) floods in central Western Europe.</p><p>With a view to gain a better understanding of the mechanisms controlling the recent flash flood events at higher latitudes, we explore various avenues related to the non-stationarity of environmental systems. We hypothesize that an increase in the occurrence of flash flood prone atmospheric conditions has recently led to higher precipitation totals and a subsequent increase in flash flood events in central Western Europe.</p><p>Therefore, we first analysed relevant atmospheric parameters from the ERA 5 reanalysis dataset. Second, we linked the atmospheric parameters to the concept of general circulation patterns as per Hess and Brezowsky (1977). Third, we analysed precipitation data from a set of stations located in the Moselle river basin (35.000 km<sup>2</sup>). These three pillars build the base for identifying flash flood prone atmospheric conditions over space and time that are then compared to actual occurrences of extreme discharge events in streams within the Moselle river basin.</p><p>To validate our hypothesis, spatial and temporal patterns in the occurrence of extreme precipitation and discharge events need to match atmospheric patterns. Preliminary results suggest that daily precipitation data and meridional circulation patterns do not show a clear trend towards an increased occurrence of precipitation events or higher precipitation amounts. Due to the limitations inherent to the available long-term dataset of daily data, the hypothesis can only be partly evaluated, and more detailed analyses are added. For that reason, discharge data with a 15-minute resolution, along with precipitation radar data of 5-minute time steps will be employed at a limited spatial extent in future analyses. In case of rejection of our working hypothesis this may pinpoint to other flash flood triggering mechanisms, such as changes in land use, soil moisture conditions or cultivation methods.</p>
Groundwater from the La Paz arid coastal aquifer in Baja California, Mexico, is essentially the only source of drinking water for the local population and tourists, as well as irrigation water for agricultural needs. The intensive... more
Groundwater from the La Paz arid coastal aquifer in Baja California, Mexico, is essentially the only source of drinking water for the local population and tourists, as well as irrigation water for agricultural needs. The intensive exploitation of the aquifer and water cycling has resulted in groundwater abatement (up to 10 m) and high salinity (up to *5800 mg l-1). A study using hydrochemistry, isotopic (deuterium, oxygen-18 and carbon -14) and gaseous tracers (chlorofluorocarbons CFC-11, CFC-12, CFC-113), as well as multivariate statistics, was developed to elucidate groundwater composition, flow and occurrence. Groundwater is of meteoric origin, and a large proportion is subject to evaporation. The primary natural recharge is generated in the El Novillo and Las Cruces ranges, and groundwater subsequently flows in a SE–NW direction toward the coast. The initial water type is the result of discordant dissolution of silicate minerals and ion exchange on soils. In the lower plain port...
Research Interests: