Skip to main content
Tony Donegan

    Tony Donegan

    Aging and Alzheimer's disease (AD) have been reported to induce changes in the cerebral cortex circuits. The present review aims to study these alterations by reviewing emergent cortical activity with a focus on the rhythmic patterns. The... more
    Aging and Alzheimer's disease (AD) have been reported to induce changes in the cerebral cortex circuits. The present review aims to study these alterations by reviewing emergent cortical activity with a focus on the rhythmic patterns. The rationale for this approach was twofold: (i) emergent rhythmic activity integrates cellular and network properties of these underlying circuits; and (ii) alterations in rhythmic patterns reflect the functional impact of changes on the network induced by the pathophysiology of the disease. We first review the changes in cortical circuits that occur with aging and AD in both humans and animal models of early aging (SAMP8) and AD. We provide experimental evidence in support of earlier studies for understanding the cortical synchrony in these neurodegenerative processes, compatible with previous observations in patients with AD. A comparison of experimental findings in the literature opens up a debate in an attempt to understand paradoxical findings