Skip to main content

    Shannon Doyle

    Hsp90 is a highly conserved molecular chaperone that remodels hundreds of client proteins, many involved in the progression of cancer and other diseases. It functions with the Hsp70 chaperone and numerous cochaperones. The bacterial Hsp90... more
    Hsp90 is a highly conserved molecular chaperone that remodels hundreds of client proteins, many involved in the progression of cancer and other diseases. It functions with the Hsp70 chaperone and numerous cochaperones. The bacterial Hsp90 functions with an Hsp70 chaperone, DnaK, but is independent of Hsp90 cochaperones. We explored the collaboration between Escherichia coli Hsp90 and DnaK and found that the two chaperones form a complex that is stabilized by client protein binding. A J-domain protein, CbpA, facilitates assembly of the Hsp90Ec-DnaK-client complex. We identified E. coli Hsp90 mutants defective in DnaK interaction in vivo and show that the purified mutant proteins are defective in physical and functional interaction with DnaK. Understanding how Hsp90 and Hsp70 collaborate in protein remodeling will provide the groundwork for the development of new therapeutic strategies targeting multiple chaperones and cochaperones.
    ABSTRACT All organisms have a protein quality-control system that includes an array of proteins, referred to as molecular chaperones. The major functions of molecular chaperones include facilitating the folding of unfolded and misfolded... more
    ABSTRACT All organisms have a protein quality-control system that includes an array of proteins, referred to as molecular chaperones. The major functions of molecular chaperones include facilitating the folding of unfolded and misfolded polypeptides, preventing the formation of irreversible protein aggregates, reactivating proteins from aggregates, and, in some cases, partnering with proteases to degrade proteins. Molecular chaperones assist in maintaining activity and solubility of proteins in the cell during normal growth and under stress conditions. Presented here is an overview of five major chaperone families involved in protein remodeling reactions. These families include chaperonin/Hsp60, Hsp70/DnaK, Hsp90, Clp/Hsp100, and sHsp.
    Molecular chaperones are proteins that assist the folding, unfolding, and remodeling of other proteins. In eukaryotes, heat shock protein 90 (Hsp90) proteins are essential ATP-dependent molecular chaperones that remodel and activate... more
    Molecular chaperones are proteins that assist the folding, unfolding, and remodeling of other proteins. In eukaryotes, heat shock protein 90 (Hsp90) proteins are essential ATP-dependent molecular chaperones that remodel and activate hundreds of client proteins with the assistance of cochaperones. In Escherichia coli, the activity of the Hsp90 homolog, HtpG, has remained elusive. To explore the mechanism of action of E. coli Hsp90, we used in vitro protein reactivation assays. We found that E. coli Hsp90 promotes reactivation of heat-inactivated luciferase in a reaction that requires the prokaryotic Hsp70 chaperone system, known as the DnaK system. An Hsp90 ATPase inhibitor, geldanamycin, inhibits luciferase reactivation demonstrating the importance of the ATP-dependent chaperone activity of E. coli Hsp90 during client protein remodeling. Reactivation also depends upon the ATP-dependent chaperone activity of the DnaK system. Our results suggest that the DnaK system acts first on the ...
    Icosahedral capsid assembly is an example of a reaction controlled solely by the interactions of the proteins involved. Bacteriophage P22 procapsids can be assembled in vitro by mixing coat and scaffolding proteins in a nucleation-limited... more
    Icosahedral capsid assembly is an example of a reaction controlled solely by the interactions of the proteins involved. Bacteriophage P22 procapsids can be assembled in vitro by mixing coat and scaffolding proteins in a nucleation-limited reaction, where scaffolding protein directs the proper assembly of coat protein. Here, we investigated the effect of the buffer composition on the interactions necessary for capsid assembly. Different concentrations of various salts, chosen to follow the electroselectivity series for anions, were added to the assembly reaction. The concentration and type of salt was found to be crucial for proper nucleation of procapsids. Nucleation in low salt concentrations readily occurred but led to bowl-like partial procapsids, as visualized by negative stain electron microscopy. The edge of the partial capsids remained assembly-competent since coat protein addition triggered procapsid completion. The addition of salt to the partial capsids also caused procapsid completion. In addition, each salt affected both assembly rates and the extent of procapsid formation. We hypothesize that low salt conditions increase the coat protein:scaffolding protein affinity, causing excessive nuclei to form, which decreases coat protein levels leading to incomplete assembly.
    ClpB reactivates aggregated proteins in cooperation with DnaK/J. The ClpB monomer contains two nucleotide-binding domains (D1, D2), a coiled-coil domain, and an N-terminal domain attached to D1 with a 17-residue-long unstructured linker... more
    ClpB reactivates aggregated proteins in cooperation with DnaK/J. The ClpB monomer contains two nucleotide-binding domains (D1, D2), a coiled-coil domain, and an N-terminal domain attached to D1 with a 17-residue-long unstructured linker containing a Gly-Gly motif. The ClpB-mediated protein disaggregation is linked to translocation of substrates through the central channel in the hexameric ClpB, but the events preceding the translocation are poorly understood. The N-terminal domains form a ring surrounding the entrance to the channel and contribute to the aggregate binding. It was suggested that the N-terminal domain's mobility that is maintained by the unstructured linker might control the efficiency of aggregate reactivation. We produced seven variants of ClpB with modified sequence of the N-terminal linker. To increase the linker's conformational flexibility, we inserted up to four Gly next to the GG motif. To decrease the linker's flexibility, we deleted the GG motif and converted it into GP and PP. We found that none of the linker modifications inhibited the basal ClpB ATPase activity or its capability to form oligomers. However, the modified linker ClpB variants showed lower reactivation rates for aggregated glucose-6-phosphate dehydrogenase and firefly luciferase and a lower aggregate-binding efficiency than wt ClpB. We conclude that the linker does not merely connect the N-terminal domain, but it supports the chaperone activity of ClpB by contributing to the efficiency of aggregate binding and disaggregation. Moreover, our results suggest that selective pressure on the linker sequence may be crucial for maintaining the optimal efficiency of aggregate reactivation by ClpB.
    SecA, a 202 kDa dimeric protein, is the ATPase for the Sec-dependent translocase of precursor proteins in vivo. SecA must undergo conformational changes, which may involve dissociation into a monomer, as it translocates the precursor... more
    SecA, a 202 kDa dimeric protein, is the ATPase for the Sec-dependent translocase of precursor proteins in vivo. SecA must undergo conformational changes, which may involve dissociation into a monomer, as it translocates the precursor protein across the inner membrane. To better understand the dynamics of SecA in vivo, protein folding studies to probe the native, intermediate, and unfolded species of SecA in vitro have been done. SecA folds through a stable dimeric intermediate and dimerizes in the dead-time of a manual-mixing kinetic experiment ( approximately 5-7 seconds). Here, stopped-flow fluorescence and CD, as well as ultra-rapid continuous flow fluorescence techniques, were used to further probe the rapid folding kinetics of SecA. In the absence of urea, rapid, near diffusion-limited ( approximately 10(9)M(-1)s(-1)) SecA dimerization occurs following a rate-limiting unimolecular rearrangement of a rapidly formed intermediate. Multiple kinetic folding and unfolding phases were observed and SecA was shown to have multiple native and unfolded states. Using sequential-mixing stopped-flow experiments, SecA was determined to fold via parallel channels with sequential intermediates. These results confirm that SecA is a highly dynamic protein, consistent with the rapid, major conformational changes it must undergo in vivo.
    Protein disaggregation in Escherichia coli is carried out by ClpB, an AAA(+) (ATPases associated with various cellular activities) molecular chaperone, together with the DnaK chaperone system. Conformational changes in ClpB driven by ATP... more
    Protein disaggregation in Escherichia coli is carried out by ClpB, an AAA(+) (ATPases associated with various cellular activities) molecular chaperone, together with the DnaK chaperone system. Conformational changes in ClpB driven by ATP binding and hydrolysis promote substrate binding, unfolding, and translocation. Conserved pore tyrosines in both nucleotide-binding domain-1 (NBD-1) and -2 (NBD-2), which reside in flexible loops extending into the central pore of the ClpB hexamer, bind substrates. When the NBD-1 pore loop tyrosine is substituted with alanine (Y251A), ClpB can collaborate with the DnaK system in disaggregation, although activity is reduced. The N-domain has also been implicated in substrate binding, and like the NBD-1 pore loop tyrosine, it is not essential for disaggregation activity. To further probe the function and interplay of the ClpB N-domain and the NBD-1 pore loop, we made a double mutant with an N-domain deletion and a Y251A substitution. This ClpB double mutant is inactive in substrate disaggregation with the DnaK system, although each single mutant alone can function with DnaK. Our data suggest that this loss in activity is primarily due to a decrease in substrate engagement by ClpB prior to substrate unfolding and translocation and indicate an overlapping function for the N-domain and NBD-1 pore tyrosine. Furthermore, the functional overlap seen in the presence of the DnaK system is not observed in the absence of DnaK. For innate ClpB unfolding activity, the NBD-1 pore tyrosine is required, and the presence of the N-domain is insufficient to overcome the defect of the ClpB Y251A mutant.
    Three cold-sensitive mutants in phage P22 coat protein have been characterized to determine the effects of the amino acid substitutions that cause cold sensitivity on the folding pathway and the conformation of refolded coat protein. Here... more
    Three cold-sensitive mutants in phage P22 coat protein have been characterized to determine the effects of the amino acid substitutions that cause cold sensitivity on the folding pathway and the conformation of refolded coat protein. Here we find that the three cold-sensitive mutants which have the threonine residue at position 10 changed to isoleucine (T10I), the arginine residue at position 101 changed to cysteine (R101C), or the asparagine residue at position 414 changed to serine (N414S) were capable of folding from a denatured state into a soluble monomeric species, but in each case, the folded conformation was altered. Changes in the kinetics of folding were observed by both tryptophan and bisANS fluorescence. In contrast to the temperature-sensitive for folding coat protein mutants which can be rescued at nonpermissive temperatures in vivo by the overproduction of molecular chaperones GroEL and GroES [Gordon, C. L., Sather, S. K., Casjens, S., & King, J. (1994) J. Biol. Chem. 269, 27941-27951], the folding defects associated with the cold-sensitive amino acid substitutions were not recognized by GroEL and GroES.
    The DnaK/Hsp70 chaperone system and ClpB/Hsp104 collaboratively disaggregate protein aggregates and reactivate inactive proteins. The teamwork is specific: Escherichia coli DnaK interacts with E. coli ClpB and yeast Hsp70, Ssa1, interacts... more
    The DnaK/Hsp70 chaperone system and ClpB/Hsp104 collaboratively disaggregate protein aggregates and reactivate inactive proteins. The teamwork is specific: Escherichia coli DnaK interacts with E. coli ClpB and yeast Hsp70, Ssa1, interacts with yeast Hsp104. This interaction is between the middle domains of hexameric ClpB/Hsp104 and the DnaK/Hsp70 nucleotide-binding domain (NBD). To identify the site on E. coli DnaK that interacts with ClpB, we substituted amino acid residues throughout the DnaK NBD. We found that several variants with substitutions in subdomains IB and IIB of the DnaK NBD were defective in ClpB interaction in vivo in a bacterial two-hybrid assay and in vitro in a fluorescence anisotropy assay. The DnaK subdomain IIB mutants were also defective in the ability to disaggregate protein aggregates with ClpB, DnaJ and GrpE, although they retained some ability to reactivate proteins with DnaJ and GrpE in the absence of ClpB. We observed that GrpE, which also interacts with...