Skip to main content

    Saurav Misra

    The Salmonella typhimurium trans-membrane FliF MS ring templates assembly of the rotary bacterial flagellar motor, which also contains a cytoplasmic C-ring. A full-frame fusion of FliF with the rotor protein FliG assembles rings in... more
    The Salmonella typhimurium trans-membrane FliF MS ring templates assembly of the rotary bacterial flagellar motor, which also contains a cytoplasmic C-ring. A full-frame fusion of FliF with the rotor protein FliG assembles rings in non-motile expression hosts. 3D electron microscopy reconstructions of these FliFFliG rings show three high electron-density sub-volumes. 3D-classification revealed heterogeneity of the assigned cytoplasmic volume consistent with FliG lability. We used residue coevolution to construct homodimer building blocks for ring assembly, with X-ray crystal structures from other species and injectisome analogs. The coevolution signal validates folds and, importantly, indicates strong homodimer contacts for three ring building motifs (RBMs), initially identified in injectisome structures. It also indicates that the cofolded domains of the FliG N-terminal domain (FliG_N) with embedded α-helical FliF carboxy-terminal tail homo-oligomerize. The FliG middle and C-termin...
    N-glycosylation is a common posttranslational modification of secreted and membrane proteins, catalyzed by the two enzymatic isoforms of the oligosaccharyltransferase, STT3A and STT3B. Missense mutations are the most common mutations in... more
    N-glycosylation is a common posttranslational modification of secreted and membrane proteins, catalyzed by the two enzymatic isoforms of the oligosaccharyltransferase, STT3A and STT3B. Missense mutations are the most common mutations in inherited diseases, however, missense mutations that generate extra, non-native N-glycosylation sites have not been well characterized. Coagulation factor VIII (FVIII) contains five consensus N-glycosylation sites outside its functionally dispensable B domain. We developed a computer program that identified hemophilia A mutations in FVIII that can potentially create ectopic glycosylation sites. We determined that eighteen of these ectopic sites indeed become N-glycosylated. These sites span the domains of FVIII, and are primarily associated with a severe disease phenotype. Using STT3A and STT3B knockout cells, we determined that ectopic glycosylation exhibited different degrees of dependence on STT3A and STT3B. By separating the effects of ectopic N-...
    Enteroviruses are implicated in a wide range of diseases in human and animals. In this study, a novel enterovirus (species G; EVG 08/NC_USA/2015) was isolated from a diagnostic sample of neonatal pig diarrhea case and identified using... more
    Enteroviruses are implicated in a wide range of diseases in human and animals. In this study, a novel enterovirus (species G; EVG 08/NC_USA/2015) was isolated from a diagnostic sample of neonatal pig diarrhea case and identified using metagenomics and complete genome sequencing. The viral genome shares 75.4% nucleotide identity with a prototypic EVG strain (PEV9 UKG/410/73). Remarkably, a 582 nucleotide insertion, flanked by 3C(pro) cleavage sites at 5' - and 3' - ends, was found in the 2C/3A junction region of the viral genome. This insertion encodes a predicted protease with 54-68% amino acid identity to torovirus (ToV) papain-like protease (PLP). Structural homology modeling predicts that this protease adopts a fold and catalytic site characteristic of minimal PLP catalytic domains. The structure is similar to those of core catalytic domains of the foot-and-mouth disease leader protease and coronavirus PLPs, which act as de-ubiquitinating and deISGylating enzymes on host ...
    C-terminus of Hsc/p70-Interacting Protein (CHIP) is a homodimeric E3 ubiquitin ligase. Each CHIP monomer consists of a tetratricopeptide-repeat (TPR), helix-turn-helix (HH), and U-box domain. In contrast to nearly all homodimeric... more
    C-terminus of Hsc/p70-Interacting Protein (CHIP) is a homodimeric E3 ubiquitin ligase. Each CHIP monomer consists of a tetratricopeptide-repeat (TPR), helix-turn-helix (HH), and U-box domain. In contrast to nearly all homodimeric proteins, CHIP is asymmetric. To uncover the origins of asymmetry, we performed molecular dynamics simulations of dimer assembly. We determined that a CHIP monomer is most stable when the HH domain has an extended helix that supports intra-monomer TPR-U-box interaction, blocking the E2-binding surface of the U-box. We also discovered that monomers first dimerize symmetrically through their HH domains, which then triggers U-box dimerization. This brings the extended helices into close proximity, including a repulsive stretch of positively charged residues. Unable to smoothly unwind, this conflict bends the helices until the helix of one protomer breaks to relieve the repulsion. The abrupt snapping of the helix forces the C-terminal residues of the other prot...
    Missense mutation is the most common mutation type in hemophilia. However, the majority of missense mutations remain uncharacterized. Here we characterize how hemophilia mutations near the unused N-glycosylation site of the A2 domain... more
    Missense mutation is the most common mutation type in hemophilia. However, the majority of missense mutations remain uncharacterized. Here we characterize how hemophilia mutations near the unused N-glycosylation site of the A2 domain (N582) of FVIII affect protein conformation and intracellular trafficking. N582 is located in the middle of a short 310-helical turn (D580-S584), in which most amino acids have multiple hemophilia mutations. All 14 missense mutations found in this 310-helix reduced secretion levels of the A2 domain and full-length FVIII. Secreted mutants have decreased activities relative to WT FVIII. Selected mutations also lead to partial glycosylation of N582, suggesting that rapid folding of local conformation prevents glycosylation of this site in wild-type FVIII. Protease sensitivity, stability and degradation of the A2 domain vary among mutants, and between non-glycosylated and glycosylated species of the same mutant. Most of the mutants interact with the ER chap...
    Cyclin E/Cdk2 kinase activity is frequently deregulated in human cancers, resulting in impaired apoptosis. Here, we show that cyclin E/Cdk2 phosphorylates and stabilizes the pro-survival Bcl-2 family protein Mcl-1, a key cell death... more
    Cyclin E/Cdk2 kinase activity is frequently deregulated in human cancers, resulting in impaired apoptosis. Here, we show that cyclin E/Cdk2 phosphorylates and stabilizes the pro-survival Bcl-2 family protein Mcl-1, a key cell death resistance determinant to the small molecule Bcl-2 family inhibitors ABT-199 and ABT-737, mimetics of the Bcl-2 homology domain 3 (BH3). Cyclin E levels were elevated and there was increased association of cyclin E/Cdk2 with Mcl-1 in ABT-737-resistant compared to parental cells. Cyclin E depletion in various human tumor cell-lines and cyclin E-/- mouse embryo fibroblasts showed decreased levels of Mcl-1 protein, with no change in Mcl-1 mRNA levels. In the absence of cyclin E, Mcl-1 ubiquitination was enhanced, leading to decreased protein stability. Studies with Mcl-1 phosphorylation mutants show that cyclin E/Cdk2-dependent phosphorylation of Mcl-1 residues on its PEST domain resulted in increased Mcl-1 stability (Thr92, and Thr163) and Bim binding (Ser6...
    The ubiquitin ligase CHIP plays an important role in cytosolic protein quality control by ubiquitinating proteins chaperoned by Hsp70/Hsc70 and Hsp90, thereby targeting such substrate proteins for degradation. We present a 2.91 Å... more
    The ubiquitin ligase CHIP plays an important role in cytosolic protein quality control by ubiquitinating proteins chaperoned by Hsp70/Hsc70 and Hsp90, thereby targeting such substrate proteins for degradation. We present a 2.91 Å resolution structure of the tetratricopeptide repeat (TPR) domain of CHIP in complex with the α-helical lid subdomain and unstructured tail of Hsc70. Surprisingly, the CHIP-TPR interacts with determinants within both the Hsc70-lid subdomain and the C-terminal PTIEEVD motif of the tail, exhibiting an atypical mode of interaction between chaperones and TPR domains. We demonstrate that the interaction between CHIP and the Hsc70-lid subdomain is required for proper ubiquitination of Hsp70/Hsc70 or Hsp70/Hsc70-bound substrate proteins. Posttranslational modifications of the Hsc70 lid and tail disrupt key contacts with the CHIP-TPR and may regulate CHIP-mediated ubiquitination. Our study shows how CHIP docks onto Hsp70/Hsc70 and defines a bipartite mode of intera...
    We have examined light-induced currents in oriented membranes of the bacteriorhodopsin mutants R82K and R82Q. Our results suggest that two photocurrent components found in R82K, with 30 and 300 microseconds lifetimes, are due to the... more
    We have examined light-induced currents in oriented membranes of the bacteriorhodopsin mutants R82K and R82Q. Our results suggest that two photocurrent components found in R82K, with 30 and 300 microseconds lifetimes, are due to the photocycle of the 13-cis rather than the all-trans form of the pigment. We investigated the pH dependence of these components and their correspondence to absorbance changes at 660 nm characteristic of photointermediates of the 13-cis cycle. The presence of a D2O effect suggests that the charge motions producing these photocurrents are related to proton or protonated amino acid movement within the molecule. The current amplitudes depend on the protonation states of at least two residues, D85 and (probably) E204. In R82Q, a 10 microseconds photocurrent is observed that also depends on the protonation state of D85 and is similar to the 30 microseconds current in R82K. We attempt to explain these currents in terms of a model for interacting residues in the e...
    IL-17 is a proinflammatory cytokine implicated in the pathogenesis of autoimmune diseases including psoriasis. ACT1 is an essential adaptor molecule in the IL-17 signaling pathway. A missense single nucleotide polymorphism (rs33980500;... more
    IL-17 is a proinflammatory cytokine implicated in the pathogenesis of autoimmune diseases including psoriasis. ACT1 is an essential adaptor molecule in the IL-17 signaling pathway. A missense single nucleotide polymorphism (rs33980500; SNP-D10N) that resulted in the substitution of an asparagine for an aspartic acid at position 10 of ACT1 (ACT1-D10N) is associated with psoriasis susceptibility. Due to alternative splicing in humans, SNP-D10N encodes two mutated ACT1 proteins, ACT1-D10N and ACT1-D19N. Although both ACT1 isoforms are Hsp90 client proteins, the nine additional amino acids in ACT1-D19N provide an additional Hsp90 binding site that is absent in ACT1-D10N. Therefore, whereas ACT1-D10N is a dead protein that is unable to transduce IL-17 signals for gene expression, ACT1-D19N is fully responsive to IL-17. Intriguingly, the two ACT1 isoforms are differentially expressed in ACT1(D10N/D10N) fibroblasts and T cells. Fibroblasts express both isoforms equally, enabling ACT1-D19N ...
    Nitric oxide synthases (NOSs) are haem-thiolate enzymes that catalyse the conversion of L-arginine (L-Arg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The... more
    Nitric oxide synthases (NOSs) are haem-thiolate enzymes that catalyse the conversion of L-arginine (L-Arg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide a hydrogen bond for oxygen activation (O-O scission). We present a study of native iNOS compared with iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to those of their native counterparts. Single turnover reactions catalysed by iNOSoxy with L-Arg (first reaction step) or N-hydroxy-L-arginine (second reaction step) showed that mesohaem substitution triggered higher rates of FeIIO2 conversion and altered other...
    ▪   Protein kinase C homology-1 and -2, FYVE, and pleckstrin homology domains are ubiquitous in eukaryotic signal transduction and membrane-trafficking proteins. These domains regulate subcellular localization and protein function by... more
    ▪   Protein kinase C homology-1 and -2, FYVE, and pleckstrin homology domains are ubiquitous in eukaryotic signal transduction and membrane-trafficking proteins. These domains regulate subcellular localization and protein function by binding to lipid ligands embedded in cell membranes. Structural and biochemical analysis of these domains has shown that their molecular mechanisms of membrane binding depend on a combination of specific and nonspecific interactions with membrane lipids. In vivo studies of green fluorescent protein fusions have highlighted the key roles of these domains in regulating protein localization to plasma and internal membranes in cells.
    Phosphorylation of the cytosolic tails of transmembrane receptors can regulate their intracellular trafficking. The structural basis for such regulation, however, has not been explained in most cases. The cytosolic tail of the... more
    Phosphorylation of the cytosolic tails of transmembrane receptors can regulate their intracellular trafficking. The structural basis for such regulation, however, has not been explained in most cases. The cytosolic tail of the cation-independent mannose 6-phosphate receptor contains a serine residue within an acidic-cluster dileucine signal that is important for the function of the receptor in the biosynthetic sorting of lysosomal hydrolases. We show here that phosphorylation of this Ser enhances interactions of the signal with its recognition module, the VHS domain of the GGA proteins. Crystallographic analyses demonstrate that the phosphoserine residue interacts electrostatically with two basic residues on the VHS domain of GGA3, thus providing an additional point of attachment of the acidic-cluster dileucine signal to its recognition module.
    The GGA family of clathrin adaptor proteins mediates the intracellular trafficking of transmembrane proteins by interacting with DXXLL-type sorting signals on the latter. These signals were originally identified at the carboxy-termini of... more
    The GGA family of clathrin adaptor proteins mediates the intracellular trafficking of transmembrane proteins by interacting with DXXLL-type sorting signals on the latter. These signals were originally identified at the carboxy-termini of the transmembrane cargo proteins. Subsequent studies, however, showed that internal DXXLL sorting motifs occur within the N- or C-terminal cytoplasmic domains of cargo molecules. The GGAs themselves also contain internal DXXLL motifs that serve to auto-regulate GGA function. A recent study challenged the notion that internal DXXLL signals are competent for binding to GGAs. Since the question of whether GGA adaptors interact with internal DXXLL motifs is fundamental to the identification of bona fide GGA cargo, and to an accurate understanding of GGA regulation within cells, we have extended our previous findings. We now present additional evidence confirming that GGAs do interact with internal DXXLL motifs. We also summarize the recent reports from ...
    In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal... more
    In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal centered around a conserved FMDE motif. Mutation of any of three critical residues within this motif leads to loss of specific apical targeting. Modeling based on the known structure of syntaxin 1 revealed that these residues are exposed on the surface of a three-helix bundle. Syntaxin 3 targeting does not require binding to Munc18b. Instead, syntaxin 3 recruits Munc18b to the plasma membrane. Expression of mislocalized mutant syntaxin 3 in Madin-Darby canine kidney cells leads to basolateral mistargeting of apical membrane proteins, disturbance of tight junction formation, and loss of ability to form an organized polarized epithelium. These results indicate that SNARE proteins contribute to the overall specificity of membrane trafficking in vivo, and th...
    Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes encoding inflammatory factors and are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor... more
    Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes encoding inflammatory factors and are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for signaling by either IL-17 or IL-25, and it is recruited to their receptors (IL-17R and IL-25R) through heterotypic interactions between the SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R] domain of Act1 and that of the receptor. SEFIR domains have structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors and IL-1R. Whereas the BB' loop of TIR is required for TIR-TIR interactions, we found that deletion of the BB' loop from Act1 or IL-17RA (a common subunit of both IL-17R and IL-25R) did not affect Act1-IL-17RA interactions; rather, deletion of the CC' loop from Act1 or IL-17RA abolished the interaction between both proteins. Surface plasmon resonance measurements showed that a peptide corresponding to the CC' loop of Act1 bound directly to IL-17RA. A cell-permeable decoy peptide based on the CC' loop sequence inhibited IL-17- or IL-25-mediated signaling in vitro, as well as IL-17- and IL-25-induced pulmonary inflammation in mice. Together, these findings provide the molecular basis for the specificity of SEFIR-SEFIR versus TIR-TIR domain interactions and consequent signaling. Moreover, we suggest that the…
    Specific sorting signals direct transmembrane proteins to the compartments of the endosomal-lysosomal system. Acidic-cluster-dileucine signals present within the cytoplasmic tails of sorting receptors, such as the cation-independent and... more
    Specific sorting signals direct transmembrane proteins to the compartments of the endosomal-lysosomal system. Acidic-cluster-dileucine signals present within the cytoplasmic tails of sorting receptors, such as the cation-independent and cation-dependent mannose-6-phosphate receptors, are recognized by the GGA (Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding) proteins. The VHS (Vps27p, Hrs and STAM) domains of the GGA proteins are responsible for the highly specific recognition of these acidic-cluster-dileucine signals. Here we report the structures of the VHS domain of human GGA3 complexed with signals from both mannose-6-phosphate receptors. The signals bind in an extended conformation to helices 6 and 8 of the VHS domain. The structures highlight an Asp residue separated by two residues from a dileucine sequence as critical recognition elements. The side chains of the Asp-X-X-Leu-Leu sequence interact with subsites consisting of one electropositive and two shallow hydrophobic pockets, respectively. The rigid spatial alignment of the three binding subsites leads to high specificity.
    We have measured the current generated by light-activated proton release from bacteriorhodopsin into solution as a function of both pH and ionic strength. We find that proton release into solution decreases with increasing pH with an... more
    We have measured the current generated by light-activated proton release from bacteriorhodopsin into solution as a function of both pH and ionic strength. We find that proton release into solution decreases with increasing pH with an intrinsic pKa of 8.2 +/- 0.2. This pH dependence indicates that the deprotonation of a certain group inhibits or abolishes proton release. Under physiological conditions, this group either releases a proton directly into solution or interacts with the site of proton release. The most immediate candidates for this protonatable species are tyrosine-57, tyrosine-185, arginine-82, and water; acting individually or cooperatively. The salt dependence of the apparent pKa of this group also allows us to calculate the surface charge density of about -5 charges per bacteriorhodopsin, compatible with previous estimates.
    Coupling of ubiquitin conjugation to ER degradation (CUE) domains are approximately 50 amino acid monoubiquitin binding motifs found in proteins of trafficking and ubiquitination pathways. The 2.3 A structure of the Vps9p-CUE domain is a... more
    Coupling of ubiquitin conjugation to ER degradation (CUE) domains are approximately 50 amino acid monoubiquitin binding motifs found in proteins of trafficking and ubiquitination pathways. The 2.3 A structure of the Vps9p-CUE domain is a dimeric domain-swapped variant of the ubiquitin binding UBA domain. The 1.7 A structure of the CUE:ubiquitin complex shows that one CUE dimer binds one ubiquitin molecule. The bound CUE dimer is kinked relative to the unbound CUE dimer and wraps around ubiquitin. The CUE monomer contains two ubiquitin binding surfaces on opposite faces of the molecule that cannot bind simultaneously to a single ubiquitin molecule. Dimerization of the CUE domain allows both surfaces to contact a single ubiquitin molecule, providing a mechanism for high-affinity binding to monoubiquitin.
    Phosphatidylinositol 3-phosphate regulates membrane trafficking and signaling pathways by interacting with the FYVE domains of target proteins. The 1.15 A structure of the Vps27p FYVE domain reveals two antiparallel beta sheets and an... more
    Phosphatidylinositol 3-phosphate regulates membrane trafficking and signaling pathways by interacting with the FYVE domains of target proteins. The 1.15 A structure of the Vps27p FYVE domain reveals two antiparallel beta sheets and an alpha helix stabilized by two Zn2+-binding clusters. The core secondary structures are similar to a rabphilin-3A Zn2+-binding domain and to the C1 and LIM domains. Phosphatidylinositol 3-phosphate binds to a pocket formed by the (R/K)(R/K)HHCR motif. A lattice contact shows how anionic ligands can interact with the phosphatidylinositol 3-phosphate-binding site. The tip of the FYVE domain has basic and hydrophobic surfaces positioned so that nonspecific interactions with the phospholipid bilayer can abet specific binding to phosphatidylinositol 3-phosphate.
    Background Ubiquitin (E3) ligases interact with specific ubiquitin conjugating (E2) enzymes to ubiquitinate particular substrate proteins. As the combination of E2 and E3 dictates the type and biological consequence of ubiquitination, it... more
    Background Ubiquitin (E3) ligases interact with specific ubiquitin conjugating (E2) enzymes to ubiquitinate particular substrate proteins. As the combination of E2 and E3 dictates the type and biological consequence of ubiquitination, it is important to understand the basis of specificity in E2:E3 interactions. The E3 ligase CHIP interacts with Hsp70 and Hsp90 and ubiquitinates client proteins that are chaperoned by these heat shock proteins. CHIP interacts with two types of E2 enzymes, UbcH5 and Ubc13-Uev1a. It is unclear, however, why CHIP binds these E2 enzymes rather than others, and whether CHIP interacts preferentially with UbcH5 or Ubc13-Uev1a, which form different types of polyubiquitin chains. Results The 2.9 Å crystal structure of the CHIP U-box domain complexed with UbcH5a shows that CHIP binds to UbcH5 and Ubc13 through similar specificity determinants, including a key S-P-A motif on the E2 enzymes. The determinants make different relative contributions to the overall in...
    To explore the role of Arg82 in the catalysis of proton transfer in bacteriorhodopsin, we replaced Arg82 with Lys, which is also positively charged at neutral pH but has an intrinsic pKa of about 1.7 pH units lower than that of Arg. In... more
    To explore the role of Arg82 in the catalysis of proton transfer in bacteriorhodopsin, we replaced Arg82 with Lys, which is also positively charged at neutral pH but has an intrinsic pKa of about 1.7 pH units lower than that of Arg. In the R82K mutant expressed in Halobacterium salinarium, we found the following: (1) The pKa of the purple-to-blue transition at low pH (which reflects the pKa of Asp85) is 3.6 +/- 0.1. At high pH a second inflection in the blue-to-purple transition with pKa = 8.0 is found. The complex titration behavior of Asp85 indicates that the pKa of Asp85 depends on the protonation state of another amino acid residue, X', which has a pKa = 8.0 in R82K. The fit of the experimental data to a model of two interacting residues shows that deprotonation of X' at high pH causes a shift in the pKa of Asp85 from 3.7 to 6.0. In turn, protonation of Asp85 decreases the pKa of X' by 2.3 pH units. This suggests that X' can release a proton upon formation of the M intermediate and the concomitant protonation of Asp85 in the photocycle. (2) The rate constant of dark adaptation, kda, is proportional to the fraction of blue membrane between pH 2 and 10, indicating that thermal isomerization proceeds through the transient protonation of Asp85. The pH dependence of kda shows that two groups with pKal = 3.9 and pKa2 = 8.0 control the rate of dark adaptation in R82K. The 1.7 pH unit shift in pKa2 in R82K compared to the wild type (WT) (pKa2 = 9.7) supports the hypothesis that X' is Arg82 in WT and Lys82 in R82K (or at least that these groups are the principal part of a cluster of residues that constitute X'). (3) Under steady state illumination, the efficiency of proton transport in R82K incorporated in phosphatidylcholine vesicles is at least 40% of that in the WT. A flash-induced transient signal of the pH-sensitive dye pyranine is similar to that in the WT (proton release precedes uptake), but the amplitude is small in R82K (about 15% of that found in the WT), indicating that only a small fraction of protons is released fast in R82K. This supports the suggestions that Arg82 is associated with the proton release pathway (acts as a proton release group or part of a proton release complex) and that Lys cannot efficiently substitute for Arg in this process.(ABSTRACT TRUNCATED AT 400 WORDS)

    And 8 more