Skip to main content

    Ronald Nachman

    Neuropeptides related to vertebrate tachykinins have been identified in Drosophila and are referred to as drosotachykinins, or DTKs. Two Drosophila G protein-coupled receptors, designated NKD (neurokinin receptor from Drosophila; CG6515)... more
    Neuropeptides related to vertebrate tachykinins have been identified in Drosophila and are referred to as drosotachykinins, or DTKs. Two Drosophila G protein-coupled receptors, designated NKD (neurokinin receptor from Drosophila; CG6515) and DTKR (Drosophila tachykinin receptor; CG7887), display sequence similarities to mammalian tachykinin receptors. Whereas DTKR was shown to be activated by DTKs [Birse RT, Johnson EC, Taghert PH, Nässel DR.
    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone... more
    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested its ligand specificities in a heterologous reporter system. HzDHr was expressed in Chinese Hamster Ovary (CHO) cells, which were co-transfected with the aequorin reporter, and was used to measure the ligand activities. A total of 68 chemicals, including natural DH analogs and structurally similar peptide mimetics, were tested for agonistic and antagonistic activities. Several peptide mimetics with a 2-amino-7-bromofluorene-succinoyl (2Abf-Suc) N-terminal modification showed strong agonistic activities; these mimetics included 2Abf-Suc-F[dA]PRLamide, 2Abf-Suc-F[dR]PRLamide, 2Abf-Suc-FKPRLamide and 2Abf-Suc-FGPRLamide. Antagonistic activity was found in the ecdysis triggering hormone in Dro...
    We identified the first pyrokinin receptor (Rhimi-PKR) in Chelicerata and analyzed structure-activity relationships of cognate ligand neuropeptides and their analogs. Based on comparative and phylogenetic analyses, this receptor, which we... more
    We identified the first pyrokinin receptor (Rhimi-PKR) in Chelicerata and analyzed structure-activity relationships of cognate ligand neuropeptides and their analogs. Based on comparative and phylogenetic analyses, this receptor, which we cloned from larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae), is the ortholog of the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN)/diapause hormone (DH) neuropeptide family receptor. Rhimi-PKR functional analyses using calcium bioluminescence were performed with a developed stable recombinant CHO-K1 cell line. Rhimi-PKR was activated by four endogenous PKs from the Lyme disease vector, the tick Ixodes scapularis (EC50s range: 85.4 nM-546 nM), and weakly by another tick PRX-amide peptide, periviscerokinin (PVK) (EC50 = 24.5 μM). PK analogs with substitutions of leucine, isoleucine or valine at the C-terminus for three tick PK peptides, Ixosc-PK1, Ixosc-PK2, and Ixosc-PK3, retained their potency on Rhi...
    The degradation of synthetic cydiastatin 4 (ARPYSFGL-amide) and cydiastatin 4 analogues cydiastatin 4alpha (PPPPPARPYSFGL-amide) and cydiastatin 4beta (PPPPPARPYSF[Acpc]L-amide) by enzymes associated with the midgut and/or haemolymph of... more
    The degradation of synthetic cydiastatin 4 (ARPYSFGL-amide) and cydiastatin 4 analogues cydiastatin 4alpha (PPPPPARPYSFGL-amide) and cydiastatin 4beta (PPPPPARPYSF[Acpc]L-amide) by enzymes associated with the midgut and/or haemolymph of the tobacco hawkmoth moth, Manduca sexta was investigated using reversed-phase high performance liquid chromatography (RP-HPLC) combined with matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). Cydiastatin 4 had an estimated half-life of c. 16.5min when incubated with midgut tissue in vitro and c. 2.5min with midgut lumen contents. Two degradation products were identified; cydiastatin(1-6), due to cleavage of the C-terminal di-peptide GL-amide, and cydiastatin(2-8), due to cleavage of the N-terminal A residue. Both cydiastatin 4alpha and cydiastatin 4beta had increased stability to gut and haemolymph enzymes, and full biological activity, but reduced potency compared to cydiastatin 4 when assayed on foregut pe...
    Two alternatively spliced Caenorhabditis elegans G protein-coupled receptors, T19F4.1a and T19F4.1b, were cloned and functionally characterized. The T19F4.1b receptor protein is 30 amino acids longer than T19F4.1a, and the difference in... more
    Two alternatively spliced Caenorhabditis elegans G protein-coupled receptors, T19F4.1a and T19F4.1b, were cloned and functionally characterized. The T19F4.1b receptor protein is 30 amino acids longer than T19F4.1a, and the difference in amino acid constitution is exclusively conferred to the intracellular C-terminal region, suggesting a potential difference in G protein-coupling specificity. Following cloning of the receptor cDNAs into the pcDNA3 vector and stable or transient transfection into Chinese hamster ovary cells, the aequorin bioluminescence/Ca2+ assay was used to investigate receptor activation. This is the first report of the construction of a cell line stably expressing a C. elegans neuropeptide receptor. Our experiments identified both receptors as being cognate receptors for two FMRFamide-related peptides encoded by the flp-2 precursor: SPREPIRFamide (FLP2-A) and LRGEPIRFamide (FLP2-B). Pharmacological profiling using truncated forms of FLP2-A and -B revealed that the...
    Insect neuropeptides, having the common C-terminal sequence FXPRLamide X = V, T, S, or G), were tested for phyeromonotropic activity in the moth, Helicoverpa zea. Dose-response studies indicated that locustamyotropin-II or... more
    Insect neuropeptides, having the common C-terminal sequence FXPRLamide X = V, T, S, or G), were tested for phyeromonotropic activity in the moth, Helicoverpa zea. Dose-response studies indicated that locustamyotropin-II or locustapyrokinin-II induced production of more pheromone than was stimulated by the pheromone biosynthesis activating neuropeptide of this moth. Other peptides showed various degrees of pheromonotropic activity. The data indicated that substitution of the variable amino acid in the C-terminal pentapeptide sequence resulted in significant differences in pheromonotropic activity. However, the overall structure of the peptide was also found to be of importance.
    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a... more
    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ...
    Allatostatins are 6–18 amino acid peptides synthezed by insects to control production of juvenile hormones, which in turn regulate functions including metamorphosis and egg production. Four insect allatostatin neuropeptide analogues... more
    Allatostatins are 6–18 amino acid peptides synthezed by insects to control production of juvenile hormones, which in turn regulate functions including metamorphosis and egg production. Four insect allatostatin neuropeptide analogues incorporating turn-promoting pseudopeptide moieties in the region responsible for biological activity were prepared by solid phase peptide synthetic methods. Bioassay indicated that activities approached those of the natural neuropeptides, and
    The neuropeptidergic system in insects is an excellent target for pest control strategies. One promising biorational approach is the use of peptidomimetics modified from endogenous ligands to enhance biostability and bioavailability. In... more
    The neuropeptidergic system in insects is an excellent target for pest control strategies. One promising biorational approach is the use of peptidomimetics modified from endogenous ligands to enhance biostability and bioavailability. In this study, we functionally characterized five different G protein-coupled receptors in a phylogenetic cluster, containing receptors for PRXamide in the red flour beetle Tribolium castaneum, by evaluating a series of 70 different peptides and peptidomimetics. Three pyrokinin receptors (TcPKr-A, -B, and -C), cardioacceleratory peptide receptor (TcCAPAr) and ecdysis triggering hormone receptor (TcETHr) were included in the study. Strong agonistic or antagonistic peptidomimetics were identified, and included beta-proline (β(3)P) modification of the core amino acid residue proline and also a cyclo-peptide. It is common for a ligand to act on multiple receptors. In a number of cases, a ligand acting as an agonist on one receptor was an efficient antagonis...
    Neuropeptides of the capa-gene are typical of the abdominal neurosecretory system of insects. In this study, we investigated these peptides in two widely distributed and large pest flies, namely Musca domestica and Neobellieria bullata.... more
    Neuropeptides of the capa-gene are typical of the abdominal neurosecretory system of insects. In this study, we investigated these peptides in two widely distributed and large pest flies, namely Musca domestica and Neobellieria bullata. Using a combination of MALDI-TOF and ESI-QTOF mass spectrometry, periviscerokinins and a pyrokinin were analyzed from single perisympathetic organ preparations. The species-specific peptide sequences differ remarkably
    The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying... more
    The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying that genes encoding these ligands may orchestrate an array of functions, a phenomenon known as pleiotropy. Here we examine whether pleiotropic actions of peptide genes might influence ligand-receptor coevolution. Four test groups of neuropeptides characterized by conserved C-terminal amino acid sequence motifs and their cognate receptors were examined in the red flour beetle (Tribolium castaneum): 1) cardioacceleratory peptide 2b (CAPA); CAPAr, 2) pyrokinin/diapause hormone (PK1/DH); PKr-A, -B, 3) pyrokinin/pheromone biosynthesis activating hormone (PK2/PBAN); PKr-C, and 4) ecdysis triggering hormone (ETH); ETHr-b. Ligand-receptor specificities were established through heterologous expression of receptors in cell-based assays for 9 endogenous ligands. ...
    A direct mass spectrometric investigation of nerve homologs of the abdominal perisympathetic organs was employed to reveal the first and complete sequences of CAPA peptides from a hemipteran species, the southern green stinkbug Nezara... more
    A direct mass spectrometric investigation of nerve homologs of the abdominal perisympathetic organs was employed to reveal the first and complete sequences of CAPA peptides from a hemipteran species, the southern green stinkbug Nezara viridula. Side-chain fragmentations allowed the assignment of internal Leu/Ile; on-plate acetylation was used to distinguish between the mass-related Lys and Gln. The following sequences were obtained:
    We performed the first comprehensive peptidomic analysis of neurohormones from hemipteran insects by analyzing the neuropeptides of two major neurohemal organs, namely the corpora cardiaca and abdominal perisympathetic organs. For the... more
    We performed the first comprehensive peptidomic analysis of neurohormones from hemipteran insects by analyzing the neuropeptides of two major neurohemal organs, namely the corpora cardiaca and abdominal perisympathetic organs. For the experiments we selected four related species of polyphagous stinkbugs (Pentatomidae), three of which are known to attack several important food crops. Peptide sequences were identified by MALDI-TOF mass spectrometry; tandem fragmentation of myosuppressin, sNPF, CAPA-periviscerokinins and pyrokinins revealed novel sequences not known from other insects so far. Most Leu/Ile and Glu/Lys ambiguities could be solved by either specific side-chain fragmentations or on-plate acetylation experiments. The identification of the specific sequences provides a solid basis for forthcoming pharmacological tests to study the neuroendocrine system of these pest insects. However, it should be mentioned in this context that the sequences of the peptides from different stinkbugs are likely not representative of Hemiptera in general. The forthcoming release of the genome from the reduviid Rhodnius prolixus will provide sufficient data to clear this point.
    The multifunctional arthropod 'insect... more
    The multifunctional arthropod 'insect kinins' share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1=His, Asn, Ser, or Tyr and X2=Ser, Pro, or Ala. Eight different analogs of the insect kinin C-terminal pentapeptide active core in which the critical residues Phe 1, Pro3 and Trp 4 are replaced with beta 3-amino acid and/or their beta2-amino acid counterparts were evaluated on recombinant insect kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini) and the dengue vector, the mosquito Aedes aegypti (L.). A number of these analogs previously demonstrated enhanced resistance to degradation by peptidases. Single-replacement analog beta 2 Trp 4 and double-replacement analog [beta 3 Phe 2, beta 3 Pro 3] of the insect kinins proved to be selective agonists for the tick receptor, whereas single-replacement analog beta 3 Pro 3 and double-replacement analog [beta 3 Phe, beta 3 Pro 3] were strong agonists on both mosquito and tick receptors. These biostable analogs represent new tools for arthropod endocrinologists and potential leads in the development of selective, environmentally friendly arthropod pest control agents capable of disrupting insect kinin-regulated processes.
    The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in a variety of insects. An active core analog containing an (E)-alkene, trans-Pro... more
    The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in a variety of insects. An active core analog containing an (E)-alkene, trans-Pro isosteric component was evaluated in four disparate PK/PBAN bioassays in four different insect species. These bioassays include pheromone biosynthesis in the moth Heliothis peltigera, melanization in the larval Spodoptera littoralis, pupariation acceleration in the larval fly Neobellieria bullata, and hindgut contraction in the cockroach Leucophaea maderae. The conformationally constrained analog demonstrated activity equivalent to parent PK/PBAN peptides of equal length in all four PK/PBAN bioassays, and matched and/or approached the activity of peptides of natural length in three of them. In the melanization bioassay, the constrained analog exceeded the efficacy (maximal response) of the natural PBAN1-33 by a factor of 2 (at 1nmol). The results provide strong evidence for the orientation of Pro and the core conformation adopted by PK/PBAN neuropeptides during interaction with receptors associated with a range of disparate PK/PBAN bioassays. The work further identifies a scaffold with which to design mimetic PK/PBAN analogs as potential leads in the development of environmentally favorable pest management agents capable of disrupting PK/PBAN-regulated systems.
    Peptides from the pyrokinin/PBAN family and some structurally related compounds identified in various arthropods were tested for acceleration of puparial contraction in flesh fly larvae. Modifications of behavioural patterns of... more
    Peptides from the pyrokinin/PBAN family and some structurally related compounds identified in various arthropods were tested for acceleration of puparial contraction in flesh fly larvae. Modifications of behavioural patterns of pupariation were further studied for the active compounds using a behavioural analysis based on the recording of changes in tension of the cuticle. Nine peptides belonging to the pyrokinin/PBAN family (Lem-PK, Pea-PK-5, Lom-PK II, Hez-PBAN, Bom-DH-I), identified in five different insect species, two pyrokinin peptides derived from the genome of Drosophila melanogaster (capa-3, and hugin), and two pyrokinins identified from the white shrimp Penaeus vannamei were very active in the pupariation assay, with threshold doses within the range of 0.1-5.0 pmol larva(-1). High activity was also detected for a related peptide ETH1 from Drosophila. All of these peptides share a C-terminal PRLamide, which is essential and sufficient for the activity. Interestingly, two other structurally related peptides from Drosophila--ETH2 and capa-1--which feature conservative changes (Ile and Val, respectively) at the C-terminal Leu position, were inactive within a physiological range of concentrations. It is clear that the receptor mediating the acceleration of puparial contraction behaviour is sensitive to the introduction of greater steric bulk at the C-terminal Leu position. The peptides that accelerated pupariation showed very similar patterns of muscular and cuticular activity.
    The degradation of synthetic cydiastatin 4 (ARPYSFGL-amide) and cydiastatin 4 analogues cydiastatin 4alpha (PPPPPARPYSFGL-amide) and cydiastatin 4beta (PPPPPARPYSF[Acpc]L-amide) by enzymes associated with the midgut and/or haemolymph of... more
    The degradation of synthetic cydiastatin 4 (ARPYSFGL-amide) and cydiastatin 4 analogues cydiastatin 4alpha (PPPPPARPYSFGL-amide) and cydiastatin 4beta (PPPPPARPYSF[Acpc]L-amide) by enzymes associated with the midgut and/or haemolymph of the tobacco hawkmoth moth, Manduca sexta was investigated using reversed-phase high performance liquid chromatography (RP-HPLC) combined with matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). Cydiastatin 4 had an estimated half-life of c. 16.5min when incubated with midgut tissue in vitro and c. 2.5min with midgut lumen contents. Two degradation products were identified; cydiastatin(1-6), due to cleavage of the C-terminal di-peptide GL-amide, and cydiastatin(2-8), due to cleavage of the N-terminal A residue. Both cydiastatin 4alpha and cydiastatin 4beta had increased stability to gut and haemolymph enzymes, and full biological activity, but reduced potency compared to cydiastatin 4 when assayed on foregut peristalsis. The P-extended N-terminus of both analogues prevented hydrolysis by aminopeptidases and the replacement of the susceptible G residue with cyclopropylalanine ([Acpc]) counteracted carboxypeptidase activity. However, both analogues were susceptible to amidase-like activity giving an increase in one mass unit presumably due to the conversion of the C-terminal amide group to the free carboxylic acid. No metabolism of cydiastatin 4beta occurred when incubated with larval M. sexta haemolymph over a 90min period.
    After a blood meal, Rhodnius prolixus undergoes a rapid diuresis to eliminate excess water and salts. During the voiding of this primary urine, R. prolixus acts as a vector of... more
    After a blood meal, Rhodnius prolixus undergoes a rapid diuresis to eliminate excess water and salts. During the voiding of this primary urine, R. prolixus acts as a vector of Chagas' disease, with the causative agent, Trypanosoma cruzi, infecting the human host via the urine. Diuresis in R. prolixus is under the neurohormonal control of serotonin and peptidergic diuretic hormones, and thus, diuretic hormones play an important role in the transmission of Chagas' disease. Although diuretic hormones may be degraded or excreted, resulting in the termination of diuresis, it would also seem appropriate, given the high rates of secretion, that a potent antidiuretic factor could be present and act to prevent excessive loss of water and salts after the postgorging diuresis. Despite the medical importance of R. prolixus, no genes for any neuropeptides have been cloned, including obviously, those that control diuresis. Here, using molecular biology in combination with matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry, we determined the sequence of the CAPA gene and CAPA-related peptides in R. prolixus, which includes a peptide with anti-diuretic activity. We have characterized the expression of mRNA encoding these peptides in various developmental stage and also examined the tissue-specific distribution in fifth-instars. The expression is localized to numerous bilaterally paired cell bodies within the central nervous system. In addition, our results show that RhoprCAPA gene expression is also associated with the testes, suggesting a novel role for this family of peptides in reproduction.

    And 6 more