Skip to main content
Juan David Fuentes Palma

    Juan David Fuentes Palma

    In this research, we address the problem of evaluating physical stability (PS) to close tailings dams (TD) from medium-sized Chilean mining using artificial intelligence (AI) algorithms. The PS can be analyzed through the study of... more
    In this research, we address the problem of evaluating physical stability (PS) to close tailings dams (TD) from medium-sized Chilean mining using artificial intelligence (AI) algorithms. The PS can be analyzed through the study of critical variables of the TD that allow estimating different potential failure mechanisms (PFM): seismic liquefaction, slope instability, static liquefaction, overtopping, and piping, which may occur in this type of tailings storage facilities in a seismically active country such as Chile. Thus, this article proposes the use of four machine learning algorithms, namely random forest (RF), support vector machine (SVM), artificial neural networks (ANN), and extreme gradient boosting (XGBoost), to estimate five possible PFM. In addition, due to the scarcity of data to train the algorithms, the use of generative adversarial networks (GAN) is proposed to create synthetic data and increase the database used. Therefore, the novelty of this article consists in esti...
    Sand tailings dams have historically been the most commonly used technology for tailings storage in Chile. Although engineering advances have resulted in the construction of approximately 250-m-high facilities, some operational challenges... more
    Sand tailings dams have historically been the most commonly used technology for tailings storage in Chile. Although engineering advances have resulted in the construction of approximately 250-m-high facilities, some operational challenges still remain, including compaction control. Control is currently performed at a few control points in a dam embankment, without considering a series of factors that affect its mechanical behavior (e.g.,layer thickness and material variability). Within this context, geostatistics can be applied in combination with low-cost geotechnical tools as an alternative to improve compaction control in tailings storage facilities. In this study, an extensive field investigation was carried out. A total of 91 PANDA penetrometer tests were conducted to monitor the degree of compaction in an experimental classified sand tailings dam. The results were analyzed using stochastic interpolation for ordinary kriging and considering the spatial distribution of the cone ...
    The high frequency dynamic behaviors of magnetic nanorings with variable anisotropy along their radius have been studied using micromagnetic simulations. The dynamic susceptibility spectrum and spatial localization of the ferromagnetic... more
    The high frequency dynamic behaviors of magnetic nanorings with variable anisotropy along their radius have been studied using micromagnetic simulations. The dynamic susceptibility spectrum and spatial localization of the ferromagnetic resonance modes are investigated by varying anisotropy gradients in nanorings of 200 nm of external radius, with different internal radii. Both the resonant frequencies and the number of peaks depend on the lower energy magnetization configuration which in turn is a function of anisotropy gradients. Besides, it is shown that the effects of the anisotropy gradient are relevant even for the narrowest ring of 10 nm wide. The idea of controlling frequencies by modifying the anisotropy gradients of the system suggests the possibility of using these nanostructures in potential magnetic controllable frequency devices.
    The inversion degree of a spinel-type nanomaterial is an essential parameter to understand the magnetic and electronic properties of ferrites. By micromagnetic simulations, we were able to connect DFT calculations and experiments for... more
    The inversion degree of a spinel-type nanomaterial is an essential parameter to understand the magnetic and electronic properties of ferrites. By micromagnetic simulations, we were able to connect DFT calculations and experiments for CoFe2O4 NPs.
    Electrospun nanofibers of poly (vinyl alcohol) (PV) were obtained to improve dispersion of cellulose nanocrystals (CNC) within hydrophobic biopolymeric matrices, such as poly(lactic acid) (PLA). Electrospun nanofibers (PV/CNC)n were... more
    Electrospun nanofibers of poly (vinyl alcohol) (PV) were obtained to improve dispersion of cellulose nanocrystals (CNC) within hydrophobic biopolymeric matrices, such as poly(lactic acid) (PLA). Electrospun nanofibers (PV/CNC)n were successfully obtained with a final concentration of 23% (w/w) of CNC. Morphological, structural and thermal properties of developed CNC and electrospun nanofibers were characterized. X-ray diffraction and thermal analysis revealed that the crystallinity of PV was reduced by the electrospinning process, and the incorporation of CNC increased the thermal stability of biodegradable nanofibers. Interactions between CNC and PV polymer also enhanced the thermal stability of CNC and improved the dispersion of CNC within the PLA matrix. PLA materials with CNC lyophilized were also casted in order to compare the properties with materials based on CNC containing nanofibers. Nanofibers and CNC were incorporated into PLA at three concentrations: 0.5%, 1% and 3% (CNC...
    In this paper we have introduced a new soft/hard nanostructure based on multisegmented CoNi nanowire arrays having diameters of around 110 nm and made of five segments with nominal compositions of Co, Co66Ni33, Co50Ni50, Co33Ni66 and Ni,... more
    In this paper we have introduced a new soft/hard nanostructure based on multisegmented CoNi nanowire arrays having diameters of around 110 nm and made of five segments with nominal compositions of Co, Co66Ni33, Co50Ni50, Co33Ni66 and Ni, each of which has a length of 800 nm, so that the total length of the multisegmented nanowire is 4 μm. These arrays have been synthesized by means of potentiostatic electrodeposition into the pores of hard-anodic alumina templates. The morphology, chemical composition and microstructure of the multisegmented CoNi nanowires were determined by high-resolution scanning electron microscopy, energy dispersive X-ray microanalysis, and powder X-ray diffraction method, respectively. The room temperature magnetic behavior of the multisegmented nanowire arrays is also studied and compared with CoNi nanowire arrays with homogeneous composition (non-segmented nanowires), synthesized in the same templates and having the same dimensions as the segmented ones. The...
    ABSTRACT Magnetization reversal in planar nanowires has been controlled using structures with a larger area pad connected to a nanowire or by means of patterned variations in the planar nanowire such as notches. In this letter, we have... more
    ABSTRACT Magnetization reversal in planar nanowires has been controlled using structures with a larger area pad connected to a nanowire or by means of patterned variations in the planar nanowire such as notches. In this letter, we have introduced a magnetic nanostructure defined as a planar nanostructure with wire-ring morphology. In particular, we have performed micromagnetic simula- tions to investigate how the magnetic properties (coercivity and remanence) change as a function of the geometric parameters of the nanostructure. Additionally, we observe that when the ring is very thin, the system reverses its magnetization by nucleation and propagation of domain walls along the nanowire. Conversely, when the ring has very thick walls, or directly turns into a solid cylinder, the system nucleates a vortex in the ring/cylinder, and then propagates the domain walls toward the nanowire sections. This reversal process is characterized by a step or plateau in the hysteresis curve, that is, a region in which differential magnetic susceptibility presents a local mini- mum or, ideally, vanishes. Finally, this nanostructure can be used in many potential applications related to the control of domain walls in planar nanowires.
    Research Interests:
    ABSTRACT We have investigated numerically the angular dependence of the coercivity and remanence of cylindrical diameter modulated Ni80Fe20 nanowires. We observed that the system always starts reversing its magnetization through the... more
    ABSTRACT We have investigated numerically the angular dependence of the coercivity and remanence of cylindrical diameter modulated Ni80Fe20 nanowires. We observed that the system always starts reversing its magnetization through the thickest segment by means of a quite complex reversal process, considering the propagation of two vortex domain walls. Furthermore, we observed a transition from vortex domain walls to coherent-mode rotation for the thinnest segment as a function of the angle in which the external magnetic field is applied. In addition, we obtained a non-monotonic behavior for the coercivity and saturation field as a function of the angle at which the external magnetic field is applied. Finally, diameter modulation is an attractive way to handle over the motion of magnetic domain walls, a phenomenon proposed as a future data storage platform.
    Chile is one of the main copper producers in the world. It is located in a geographical area where mega-earthquakes occur and this fact, together with the development of larger and higher sand tailings dams (with some facilities currently... more
    Chile is one of the main copper producers in the world. It is located in a geographical area where mega-earthquakes occur and this fact, together with the development of larger and higher sand tailings dams (with some facilities currently under development having final heights in excess of 250 m), requires that careful attention be paid to the safety and security of these facilities. In this paper, the main failure mechanisms of these sand tailings dams that have generated incidents of different magnitude involving loss of human life, significant environmental damage, and economic losses are described. Some key characteristics of reported incidents in Chile are presented, including failures resulting from the mega-earthquake that occurred on 27 February 2010 (Maule Region, Chile). Finally, the engineering practice and present Chilean regulatory framework, which have allowed progressive improvements in the construction, operation, and closure of such deposits, are described.

    And 112 more