Skip to main content

    Nicklas Forsell

    Background: In preparation for the 2015 international climate negotiations in Paris, Parties submitted Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change (UNFCCC) expressing... more
    Background: In preparation for the 2015 international climate negotiations in Paris, Parties submitted Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change (UNFCCC) expressing each countries' respective post-2020 climate actions. In this paper we assess individual Parties' expected reduction of emissions/removals from land use, land use change, and forest (LULUCF) sector for reaching their INDC target, and the aggregate global effect on the INDCs on the future development of emission and removals from the LULUCF sector. This has been done through analysis Parties' official information concerning the role of LULUCF mitigation efforts for reaching INDC targets as presented in National Communications, Biennial Update Reports, and Additional file 1. Results: On the aggregate global level, the Parties themselves perceive that net LULUCF emissions will increase over time. Overall, the net LULUCF emissions are estimated to increase by 0.6 Gt CO 2 e year −1 (range: 0.1–1.1) in 2020 and 1.3 Gt CO 2 e year −1 (range: 0.7–2.1) in 2030, both compared to 2010 levels. On the other hand, the full implementation of the INDCs is estimated to lead to a reduction of net LULUCF emissions in 2030 compared to 2010 levels. It is estimated that if all conditional and unconditional INDCs are implemented, net LULUCF emissions would decrease by 0.5 Gt CO 2 e year −1 (range: 0.2–0.8) by 2020 and 0.9 Gt CO 2 e year −1 (range: 0.5–1.3) by 2030, both compared to 2010 levels. The largest absolute reductions of net LULUCF emissions (compared to 2010 levels) are expected from Indone-sia and Brazil, followed by China and Ethiopia. Conclusions: The results highlights that countries are expecting a significant contribution from the LULUCF sector to meet their INDC mitigation targets. At the global level, the LULUCF sector is expected to contribute to as much as 20% of the full mitigation potential of all the conditional and unconditional INDC targets. However, large uncertainties still surround how Parties estimate, project and account for emissions and removals from the LULUCF sector. While INDCs represent a new source of land-use information, further information and updates of the INDCs will be required to reduce uncertainty of the LULUCF projections.
    China has announced its intention to peak CO 2 emissions by 2030 or earlier. The peak in greenhouse gas emissions would reach 35–40% above 2010 levels. Current policies are likely not to be sufficient to meet the announced 2030 target.... more
    China has announced its intention to peak CO 2 emissions by 2030 or earlier. The peak in greenhouse gas emissions would reach 35–40% above 2010 levels. Current policies are likely not to be sufficient to meet the announced 2030 target. The expected emission levels reach about 50% above 2010 levels. Our selected enhancement policy measures lead to peaking CO 2 emissions before 2030.
    This study deals with the problem of including the risk of wind damage in long-term forestry management. A model based on Graph-Based Markov Decision Processes (GMDP) is suggested for development of silvicultural management policies. The... more
    This study deals with the problem of including the risk of wind damage in long-term forestry management. A model based on Graph-Based Markov Decision Processes (GMDP) is suggested for development of silvicultural management policies. The model can both take stochastic wind events into account and be applied to forest estates containing a large number of stands. The model is demonstrated for a forest estate in southern Sweden. Treatment of the stands according to the management policy specified by the GMDP model increased the expected net present value (NPV) of the whole forest only slightly, less than 2%, under different wind-risk assumptions. Most of the stands were managed in the same manner as when the risk of wind damage was not considered. For the stands that were treated differently, however, the expected NPV increased by 3% to 8%.