Skip to main content
Noel  Faux

    Noel Faux

    The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the... more
    The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the glutamine repeat in huntingtin leads to the debilitating neurodegenerative disease, Huntington's disease. Similarly, there are a range of other disorders caused by trinucleotide repeat expansions encoding polyglutamine or polyalanine tracts. The age of onset of the polyglutamine-induced neurodegenerative diseases is usually negatively correlated with the length of expanded CAG/glutamine repeat. However, recent studies have given evidence that single amino acid repeats may also play critical roles in normal protein function and that changes in the length of single amino acid repeats is likely to play a beneficial role in evolution. This chapter will look at the prevalence, function and possible role single amino acid repeats have in evolution and other biological processes.
    Brain iron elevation is implicated in... more
    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer's risk allele, APOE-ɛ4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-ɛ4 being the major genetic risk factor for AD.
    The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the... more
    The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the glutamine repeat in huntingtin leads to the debilitating neurodegenerative disease, Huntington's disease. Similarly, there are a range of other disorders caused by trinucleotide repeat expansions encoding polyglutamine or polyalanine tracts. The age of onset of the polyglutamine-induced neurodegenerative diseases is usually negatively correlated with the length of expanded CAG/glutamine repeat. However, recent studies have given evidence that single amino acid repeats may also play critical roles in normal protein function and that changes in the length of single amino acid repeats is likely to play a beneficial role in evolution. This chapter will look at the prevalence, function and possible role single amino acid repeats have in evolution and other...
    Ubiquitous expression of mutant Cu/Zn-superoxide dismutase (SOD1) selectively affects motor neurons in the central nervous system (CNS), causing the adult-onset degenerative disease amyotrophic lateral sclerosis (ALS). The CNS-specific... more
    Ubiquitous expression of mutant Cu/Zn-superoxide dismutase (SOD1) selectively affects motor neurons in the central nervous system (CNS), causing the adult-onset degenerative disease amyotrophic lateral sclerosis (ALS). The CNS-specific impact of ubiquitous mutant SOD1 expression is recapitulated in transgenic mouse models of the disease. Here we present outcomes for the metallo-complex Cu(II)(atsm) tested for therapeutic efficacy in mice expressing SOD1(G93A) on a mixed genetic background. Oral administration of Cu(II)(atsm) delayed the onset of neurological symptoms, improved locomotive capacity and extended overall survival. Although the ALS-like phenotype of SOD1(G93A) mice is instigated by expression of the mutant SOD1, we show the improved phenotype of the Cu(II)(atsm)-treated animals involves an increase in mature mutant SOD1 protein in the disease-affected spinal cord, where concomitant increases in copper and SOD1 activity are also evident. In contrast to these effects in th...
    We assessed a blood-based signature, which previously demonstrated high accuracy at stratifying individuals with high or low neocortical β-amyloid burden (NAB), to determine whether it could also identify individuals at risk of... more
    We assessed a blood-based signature, which previously demonstrated high accuracy at stratifying individuals with high or low neocortical β-amyloid burden (NAB), to determine whether it could also identify individuals at risk of progression to Alzheimer disease (AD) within 54 months. We generated the blood-based signature for 585 healthy controls (HCs) and 74 participants with mild cognitive impairment (MCI) from the Australian Imaging, Biomarkers and Lifestyle Study who underwent clinical reclassification (blinded to biomarker findings) at 54-month follow-up. The individuals were split into estimated high and low NAB groups based on a cutoff of 1.5 standardized uptake value ratio. We assessed the predictive accuracy of the high and low NAB groupings based on progression to mild cognitive impairment or AD according to clinical reclassification at 54-month follow-up. Twelve percent of HCs with estimated high NAB progressed in comparison to 5% of HCs with estimated low NAB (odds ratio ...
    Journal of Alzheimer's Disease ISSN: 1387-2877 IOS Press DOI: 10.3233/JAD-2010-090249 ... Plasma Amyloid-β as a Biomarker in Alzheimer's Disease: The AIBL Study of Aging ... James K. Luia,b,*, Simon M. Lawsa,b,*, Qiao-Xin Lic,d,... more
    Journal of Alzheimer's Disease ISSN: 1387-2877 IOS Press DOI: 10.3233/JAD-2010-090249 ... Plasma Amyloid-β as a Biomarker in Alzheimer's Disease: The AIBL Study of Aging ... James K. Luia,b,*, Simon M. Lawsa,b,*, Qiao-Xin Lic,d, Victor L. Villemagnec,e, David Amesf,g,
    Amyloid-β (Aβ) plays a central role in the pathogenesis of... more
    Amyloid-β (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD) and has been postulated as a potential biomarker for AD. However, there is a lack of consensus as to its suitability as an AD biomarker. The objective of this study was to determine the significance of plasma Aβ as an AD biomarker and its relationship with Aβ
    The nature and extent of adverse cognitive effects due to the prescription of anticholinergic drugs in older people with and without dementia is unclear. We calculated the anticholinergic load (ACL) of medications taken by participants of... more
    The nature and extent of adverse cognitive effects due to the prescription of anticholinergic drugs in older people with and without dementia is unclear. We calculated the anticholinergic load (ACL) of medications taken by participants of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of ageing, a cohort of 211 Alzheimer's disease (AD) patients, 133 mild cognitive impairment (MCI) patients and 768 healthy controls (HC) all aged over 60 years. The association between ACL and cognitive function was examined for each diagnostic group (HC, MCI, AD). A high ACL within the HC group was associated with significantly slower response speeds for the Stroop color and incongruent trials. No other significant relationships between ACL and cognition were noted. In this large cohort, prescribed anticholinergic drugs appeared to have modest effects upon psychomotor speed and executive function, but not on other areas of cognition in healthy older adults.
    Biomarkers enabling the preclinical identification of Alzheimer's disease (AD) remain one of the major unmet challenges in the field. The blood cellular fractions offer a viable alternative to current cerebrospinal fluid and... more
    Biomarkers enabling the preclinical identification of Alzheimer's disease (AD) remain one of the major unmet challenges in the field. The blood cellular fractions offer a viable alternative to current cerebrospinal fluid and neuroimaging modalities. The current study aimed to replicate our earlier reports of altered binding within the AD-affected blood cellular fraction to copper-loaded immobilized metal affinity capture (IMAC) arrays. IMAC and anti-amyloid-β (Aβ) antibody arrays coupled with mass spectrometry were used to analyze blood samples collected from 218 participants from within the AIBL Study of Aging. Peripheral Aβ was fragile and prone to degradation in the AIBL samples, even when stored at -80°C. IMAC analysis of the AIBL samples lead to the isolation and identification of alpha-defensins 1 and 2 at elevated levels in the AD periphery, validating earlier findings. Alpha-defensins 1 and 2 were elevated in AD patients indicating that an inflammatory phenotype is prese...
    Serpins in Prokaryotes Qingwei Zhang, Ruby Law, Ashley M. Buckle, Lisa Cabrita, Sheena McGowan, James A. Irving, Noel G. Faux, Arthur M. Lesk, Stephen P. Bottomley and James C. Whisstock 1. Introduction An extensive bioinformatic analysis... more
    Serpins in Prokaryotes Qingwei Zhang, Ruby Law, Ashley M. Buckle, Lisa Cabrita, Sheena McGowan, James A. Irving, Noel G. Faux, Arthur M. Lesk, Stephen P. Bottomley and James C. Whisstock 1. Introduction An extensive bioinformatic analysis of the genomic sequence ...
    PBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of... more
    PBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of Alzheimer's disease (AD). A recent Phase IIa double-blind, randomized, placebo-controlled trial found that the 250 mg dose of PBT2 was well-tolerated, significantly lowered cerebrospinal fluid (CSF) levels of amyloid-beta42, and significantly improved executive function on a Neuro-psychological Test Battery (NTB) within 12 weeks of treatment in patients with AD. In the post-hoc analysis reported here, the cognitive, blood marker, and CSF neurochemistry outcomes from the trial were subjected to further analysis. Ranking the responses to treatment after 12 weeks with placebo, PBT2 50 mg, and PBT2 250 mg revealed that the proportions of patients showing improvement on NTB Composite or Executive Factor z-scores were significantly greater in the PBT2 250 mg group than in the placebo group. Receiver-operator characteristic analyses revealed that the probability of an improver at any level coming from the PBT2 250 mg group was significantly greater, compared to placebo, for Composite z-scores (Area Under the Curve [AUC] =0.76, p=0.0007), Executive Factor z-scores (AUC =0.93, p=1.3 x 10(-9)), and near-significant for the ADAS-cog (AUC =0.72, p=0.056). There were no correlations between changes in CSF amyloid-beta or tau species and cognitive changes. These findings further encourage larger-scale testing of PBT2 for AD.
    ABSTRACT The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of... more
    ABSTRACT The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the glutamine repeat in huntingtin leads to the debilitating neurodegenerative disease, Huntington’s disease. Similarly, there are a range of other disorders caused by trinucleotide repeat expansions encoding polyglutamine or polyalanine tracts. The age of onset of the polyglutamine-induced neurodegenerative diseases is usually negatively correlated with the length of expanded CAG/glutamine repeat. However, recent studies have given evidence that single amino acid repeats may also play critical roles in normal protein function and that changes in the length of single amino acid repeats is likely to play a beneficial role in evolution. This chapter will look at the prevalence, function and possible role single amino acid repeats have in evolution and other biological processes.
    Plasma iron levels are decreased in... more
    Plasma iron levels are decreased in Alzheimer's disease (AD) and associated with an idiopathic anemia. We examined iron-binding plasma proteins from AD patients and healthy controls from the Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of Ageing using size exclusion chromatography-inductively coupled plasma-mass spectrometry. Peak area corresponding to transferrin (Tf) saturation was directly compared to routine pathological testing. We found a significant decrease in transferrin-associated iron in AD that was missed by routine pathological tests of transferrin saturation, and that was able to discriminate between AD and controls. The AD cases showed no significant difference in transferrin concentration, only a decrease in total transferrin-bound iron. These findings support that a previously identified decrease in plasma iron levels in AD patients within the AIBL study is attributable to decreased loading of iron into transferrin, and that this subtle but discriminatory change is not observed through routine pathological testing.
    Diagnostic measures for... more
    Diagnostic measures for Alzheimer's disease (AD) commonly rely on evaluating the levels of amyloid-β (Aβ) peptides within the cerebrospinal fluid (CSF) of affected individuals. These levels are often combined with levels of an additional non-Aβ marker to increase predictive accuracy. Recent efforts to overcome the invasive nature of CSF collection led to the observation of Aβ species within the blood cellular fraction, however, little is known of what additional biomarkers may be found in this membranous fraction. The current study aimed to undertake a discovery-based proteomic investigation of the blood cellular fraction from AD patients (n = 18) and healthy controls (HC; n = 15) using copper immobilized metal affinity capture and Surface Enhanced Laser Desorption/Ionisation Time-Of-Flight Mass Spectrometry. Three candidate biomarkers were observed which could differentiate AD patients from HC (ROC AUC > 0.8). Bivariate pairwise comparisons revealed significant correlations between these markers and measures of AD severity including; MMSE, composite memory, brain amyloid burden, and hippocampal volume. A partial least squares regression model was generated using the three candidate markers along with blood levels of Aβ. This model was able to distinguish AD from HC with high specificity (90%) and sensitivity (77%) and was able to separate individuals with mild cognitive impairment (MCI) who converted to AD from MCI non-converters. While requiring further characterization, these candidate biomarkers reaffirm the potential efficacy of blood-based investigations into neurodegenerative conditions. Furthermore, the findings indicate that the incorporation of non-amyloid markers into predictive models, function to increase the accuracy of the diagnostic potential of Aβ.
    Several studies have reported that peripheral levels of copper and ceruloplasmin (CP) can differentiate patients with... more
    Several studies have reported that peripheral levels of copper and ceruloplasmin (CP) can differentiate patients with Alzheimer's disease (AD) from non-AD cases. The aim of this study was to determine the diagnostic value of serum copper, CP, and non-CP copper levels in a large cohort of AD subjects. Serum copper and CP concentrations were measured at baseline and at 18-months in participants from the Australian Imaging Biomarkers and Lifestyle Study of Ageing. Cross-sectional and longitudinal analyses were conducted using both univariate and multivariate testing adjusting for age, gender, total protein, and ApoE ε4 genotype status. There was no significant difference in levels of serum copper or CP between the AD and healthy control groups, however, we identified a near-significant decrease in non-CP copper in the mild cognitive impairment and AD groups at baseline (p = 0.02) that was significant at 18-months (p = 0.003). Our results suggest that there may be decreased non-CP copper levels in mild cognitive impairment and AD, which is consistent with diminished copper-dependent biochemical activities described in AD.
    Alzheimer&am... more
    Alzheimer's disease (AD) is the most common age-related dementia. Unfortunately due to a lack of validated biomarkers definitive diagnosis relies on the histological demonstration of amyloid-beta (Abeta) plaques and tau neurofibrillary tangles. Abeta processing is implicated in AD progression and many therapeutic strategies target various aspects of this biology. While Abeta deposition is the most prominent feature of AD, oligomeric forms of Abeta have been implicated as the toxic species inducing the neuronal dysfunction. Currently there are no methods allowing routine monitoring of levels of such species in living populations. We have used surface enhanced laser desorption ionization time of flight (SELDI-TOF) mass spectrometry incorporating antibody capture to investigate whether the cellular membrane-containing fraction of blood provides a new source of biomarkers. There are significant differences in the mass spectra profiles of AD compared with HC subjects, with significantly higher levels of Abeta monomer and dimer in the blood of AD subjects. Furthermore, levels of these species correlated with clinical markers of AD including brain Abeta burden, cognitive impairment and brain atrophy. These results indicate that fundamental biochemical events relevant to AD can be monitored in blood, and that the species detected may be useful clinical biomarkers for AD.
    Amyloid-beta (Abeta) plays a central role in the pathogenesis of Alzheimer's disease (AD) and has been postulated as a potential biomarker for AD. However, there is a lack of consensus as to its suitability as an AD biomarker. The... more
    Amyloid-beta (Abeta) plays a central role in the pathogenesis of Alzheimer's disease (AD) and has been postulated as a potential biomarker for AD. However, there is a lack of consensus as to its suitability as an AD biomarker. The objective of this study was to determine the significance of plasma Abeta as an AD biomarker and its relationship with Abeta load and to determine the effect of different assay methods on the interpretation of Abeta levels. Plasma Abeta1-40, Abeta1-42, and N-terminal cleaved fragments were measured using both a commercial multiplex assay and a well-documented ELISA in 1032 individuals drawn from the well-characterized Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Further, Abeta levels were compared to Abeta load derived from positron-emission tomography (PET) with the Pittsburgh compound B (PiB). Lower Abeta1-42 and Abeta1-42/1-40 ratio were observed in patients with AD and inversely correlated with PiB-PET derived Abeta load. How...
    Page 1. 1 High-throughput protein structure determination using grid computing Jason W. Schmidberger1, Blair Bethwaite4, Colin Enticott4, Mark A. Bate1, Steve G. Androulakis1, Noel Faux5, Cyril F. Reboul1,2, Jennifer MN ...
    The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal... more
    The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal "toxic moiety" of Alzheimer's disease. However, despite much work focused on both Abeta and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein-protein interaction networks can provide insight into protein function, however, high-throughput data often report false positives and are in frequent disagreement with low-throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Abeta to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.
    Lower hemoglobin is associated with cognitive impairment and Alzheimer's disease (AD). Since brain iron homeostasis is perturbed in AD, we investigated whether this is peripherally... more
    Lower hemoglobin is associated with cognitive impairment and Alzheimer's disease (AD). Since brain iron homeostasis is perturbed in AD, we investigated whether this is peripherally reflected in the hematological and related blood chemistry values from the Australian Imaging Biomarker and Lifestyle (AIBL) study (a community-based, cross-sectional cohort comprising 768 healthy controls (HC), 133 participants with mild cognitive impairment (MCI) and 211 participants with AD). We found that individuals with AD had significantly lower hemoglobin, mean cell hemoglobin concentrations, packed cell volume and higher erythrocyte sedimentation rates (adjusted for age, gender, APOE-ɛ4 and site). In AD, plasma iron, transferrin, transferrin saturation and red cell folate levels exhibited a significant distortion of their customary relationship to hemoglobin levels. There was a strong association between anemia and AD (adjusted odds ratio (OR)=2.43, confidence interval (CI) (1.31, 4.54)). Moreover, AD emerged as a strong risk factor for anemia on step-down regression, even when controlling for all other available explanations for anemia (adjusted OR=3.41, 95% CI (1.68, 6.92)). These data indicated that AD is complicated by anemia, which may itself contribute to cognitive decline.
    The Niemann–Pick type C1 disease protein, NPC1 may have a critical role in transition metal homeostasis.
    Over 3% of human proteins contain single amino acid repeats (repeat-containing proteins, RCPs). Many repeats (homopeptides) localize to important proteins involved in transcription, and the expansion of certain repeats, in particular... more
    Over 3% of human proteins contain single amino acid repeats (repeat-containing proteins, RCPs). Many repeats (homopeptides) localize to important proteins involved in transcription, and the expansion of certain repeats, in particular poly-Q and poly-A tracts, can also lead to the development of neurological diseases. Previous studies have suggested that the homopeptide makeup is a result of the presence of G+C-rich tracts in the encoding genes and that expansion occurs via replication slippage. Here, we have performed a large-scale genomic analysis of the variation of the genes encoding RCPs in 13 species and present these data in an online database (http://repeats.med.monash.edu.au/genetic_analysis/). This resource allows rapid comparison and analysis of RCPs, homopeptides, and their underlying genetic tracts across the eukaryotic species considered. We report three major findings. First, there is a bias for a small subset of codons being reiterated within homopeptides, and there is no G+C or A+T bias relative to the organism's transcriptome. Second, single base pair transversions from the homocodon are unusually common and may represent a mechanism of reducing the rate of homopeptide mutations. Third, homopeptides that are conserved across different species lie within regions that are under stronger purifying selection in contrast to nonconserved homopeptides.
    The nature and extent of adverse cognitive effects due to the prescription of anticholinergic drugs in older people with and without dementia is unclear. We calculated the anticholinergic load (ACL) of medications taken by participants of... more
    The nature and extent of adverse cognitive effects due to the prescription of anticholinergic drugs in older people with and without dementia is unclear. We calculated the anticholinergic load (ACL) of medications taken by participants of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of ageing, a cohort of 211 Alzheimer's disease (AD) patients, 133 mild cognitive impairment (MCI) patients and 768 healthy controls (HC) all aged over 60 years. The association between ACL and cognitive function was examined for each diagnostic group (HC, MCI, AD). A high ACL within the HC group was associated with significantly slower response speeds for the Stroop color and incongruent trials. No other significant relationships between ACL and cognition were noted. In this large cohort, prescribed anticholinergic drugs appeared to have modest effects upon psychomotor speed and executive function, but not on other areas of cognition in healthy older adults.
    Journal of Alzheimer's Disease ISSN: 1387-2877 IOS Press DOI: 10.3233/JAD-2010-090249 ... Plasma Amyloid-β as a Biomarker in Alzheimer's Disease: The AIBL Study of Aging ... James K. Luia,b,*, Simon M. Lawsa,b,*, Qiao-Xin Lic,d,... more
    Journal of Alzheimer's Disease ISSN: 1387-2877 IOS Press DOI: 10.3233/JAD-2010-090249 ... Plasma Amyloid-β as a Biomarker in Alzheimer's Disease: The AIBL Study of Aging ... James K. Luia,b,*, Simon M. Lawsa,b,*, Qiao-Xin Lic,d, Victor L. Villemagnec,e, David Amesf,g,

    And 7 more