Skip to main content

    Gianni Prosseda

    In the absence of a valid vaccine, the main therapeutic approach currently used to treat shigellosis is based on the use of antibiotics. The emergence of antibiotic resistance jeopardizes the future effectiveness of this approach.
    The essential oils from the Centaurea genus are well known for their pharmacological properties. The most abundant and dominant chemical components in Centaurea essential oils are ß-caryophyllene, hexadecanoic acid, spathulenol,... more
    The essential oils from the Centaurea genus are well known for their pharmacological properties. The most abundant and dominant chemical components in Centaurea essential oils are ß-caryophyllene, hexadecanoic acid, spathulenol, pentacosane, caryophyllene oxide, and phytol. However, whether these dominant components are the key drivers for observed antimicrobial activity remains unclear. Thus, the aim of this study was dual. Here we provide comprehensive, literature-based data to correlate the chemical compounds in Centaurea essential oils with the tested antimicrobial activity. Secondly, we characterized the essential oil of Centaurea triumfettii All. squarrose knapweed using coupled system gas chromatography–mass spectrometry and tested its phytochemicals for antimicrobial activity against E. coli and S. epidermis using disc diffusion assay and monitoring their growth in Muller Hinton broth. The most abundant compounds in C. triumfettii essential oil were hexadecanoic acid (11.1%)...
    Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental... more
    Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/C...
    Shigella, the aetiological agent of human bacillary dysentery, controls the expression of its virulence determinants through an environmentally stimulated cascade of transcriptional activators. VirF is the leading activator and is... more
    Shigella, the aetiological agent of human bacillary dysentery, controls the expression of its virulence determinants through an environmentally stimulated cascade of transcriptional activators. VirF is the leading activator and is essential for proper virulence expression. In this work, we report on in vitro and in vivo experiments showing that two autoinducers of the DSF family, XcDSF and BDSF interact with the jelly roll module of VirF causing its inhibition and affecting the expression of the entire virulence system of Shigella, including its ability to invade epithelial cells. We propose a molecular model explaining how the binding of XcDSF and BDSF causes inhibition of VirF by preventing its dimerization. Overall, our experimental results suggest that XcDSF and BDSF may contribute to ”colonisation resistance” in the human gut or, alternatively, may be exploited for the fine-tuning of Shigella virulence expression as the bacterium migrates from the lumen to approach the intestin...
    The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae. It consists of the AcrB transporter, which is embedded in the inner membrane, the AcrA adapter located in the periplasm, and the... more
    The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae. It consists of the AcrB transporter, which is embedded in the inner membrane, the AcrA adapter located in the periplasm, and the channel protein TolC responsible for the transport of substrates towards the extracellular environment. Besides conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here we report that the AcrAB pump heavily affects the infection process of the LF82 strain, the prototype of Adherent-Invasive Escherichia coli (AIEC) which are highly abundant in the ileal mucosa of Chron disease patients. We found that the deletion of genes encoding AcrA and/or AcrB leads to decreased survival of LF82 within macrophages. Ectopic AcrAB expression in a acrAB defective mutant restores the wild type condition. Furthermore, we demonstrate that inhibition of AcrB and replacement of the transp...
    The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae, including Shigella, the etiological agent of bacillary dysentery. In addition to conferring resistance to many classes of... more
    The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae, including Shigella, the etiological agent of bacillary dysentery. In addition to conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here, we report data demonstrating that AcrAB specifically contributes to Shigella flexneri invasion of epithelial cells. We found that deletion of both acrA and acrB genes causes reduced survival of S. flexneri M90T strain within Caco-2 epithelial cells and prevents cell-to-cell spread of the bacteria. Infections with single deletion mutant strains indicate that both AcrA and AcrB favor the viability of the intracellular bacteria. Finally, we were able to further confirm the requirement of the AcrB transporter activity for intraepithelial survival by using a specific EP inhibitor. Overall, the data from the present study expand the role of the AcrAB pump to an i...
    <p><b>Upper section</b>: Genetic organization of the <i>mdtJI</i> regulatory region. Arrows (<i>JIfusF</i>, <i>JIfusR1</i>, <i>JIfusR2</i>, and <i>JIfusR3</i>)... more
    <p><b>Upper section</b>: Genetic organization of the <i>mdtJI</i> regulatory region. Arrows (<i>JIfusF</i>, <i>JIfusR1</i>, <i>JIfusR2</i>, and <i>JIfusR3</i>) indicate the primers used for amplifying fragments carrying different portion of the <i>mdtJI</i> regulatory regions. The small dark grey boxes represent the predicted H-NS binding boxes. Transcriptional (+1) and translational (+278) start sites are indicated. <b>Lower section</b>: The β-galactosidase activity of the <i>mdtJI</i>::<i>lacZ</i> fusions, carried by plasmids pJI<i>lac</i>-3, -2 and -1 was determined in <i>E</i>. <i>coli</i> ULS153. The values reported are expressed as Miller Units [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136744#pone.0136744.ref031" target="_blank">31</a>] and represent the average ± standard deviation of five independent experiments; * denotes p < 0, 01.</p
    Shigella spp, the etiological agents of bacillary dysentery in humans, have evolved an intricate regulatory strategy to ensure fine-tuned expression of virulence genes in response to environmental stimuli. A key component in this... more
    Shigella spp, the etiological agents of bacillary dysentery in humans, have evolved an intricate regulatory strategy to ensure fine-tuned expression of virulence genes in response to environmental stimuli. A key component in this regulation is VirF, an AraC-like transcription factor, which at the host temperature (37°C) triggers, directly or indirectly, the expression of > 30 virulence genes important for invasion of the intestinal epithelium. Previous work identified two different forms of VirF with distinct functions: VirF30 activates virulence gene expression, while VirF21 appears to negatively regulate virF itself. Moreover, VirF21 originates from either differential translation of the virF mRNA or from a shorter leaderless mRNA (llmRNA). Here we report that both expression of the virF21 llmRNA and the VirF21:VirF30 protein ratio are higher at 30°C than at 37°C, suggesting a possible involvement of VirF21 in minimizing virulence gene expression outside the host (30°C). Ectopi...
    Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others,... more
    Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies. The capability of the bacterial cells to rapidly and co-ordinately set up an interplay with the host cells and/or with other bacteria facilitates their survival in the new niche. Efflux pumps are ubiquitous transmembrane transporters, able to extrude a large set of different molecules. They are strongly implicated in antibiotic resistance since they are able to efficiently expel most of the clinically relevant antibiotics from the bacterial cytoplasm. Besides antibiotic resistance, multidrug efflux pumps take part in several important processes of bacterial cell physiology, including cell to cell communication, and contribute to increase the virulence potential of several bacterial path...
    Outer membrane vesicles (OMVs) are nanostructures mostly produced by blebbing of the outer membrane in Gram negative bacteria. They contain biologically active proteins and perform a variety of processes. OMV production is also a typical... more
    Outer membrane vesicles (OMVs) are nanostructures mostly produced by blebbing of the outer membrane in Gram negative bacteria. They contain biologically active proteins and perform a variety of processes. OMV production is also a typical response to events inducing stress in the bacterial envelope. In these cases, hypervesiculation is regarded as a strategy to avoid the dangerous accumulation of undesired products within the periplasm. Several housekeeping genes influence the biogenesis of OMVs, including those correlated with peptidoglycan and cell wall dynamics. In this work, we have investigated the relationship between OMV production and the lysis module of the E. coli DLP12 cryptic prophage. This module is an operon encoding a holin, an endolysin and two spannins, and is known to be involved in cell wall maintenance. We find that deleting the lysis module increases OMV production, suggesting that during evolution this operon has been domesticated to regulate vesiculation, likel...
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
    Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug... more
    Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and t...
    Efflux pumps are membrane protein complexes conserved in all living organisms. Beyond being involved in antibiotic extrusion in several bacteria, efflux pumps are emerging as relevant players in pathogen-host interactions. We have... more
    Efflux pumps are membrane protein complexes conserved in all living organisms. Beyond being involved in antibiotic extrusion in several bacteria, efflux pumps are emerging as relevant players in pathogen-host interactions. We have investigated on the possible role of the efflux pump network in Shigella flexneri, the etiological agent of bacillary dysentery. We have found that S. flexneri has retained 14 of the 20 pumps characterized in Escherichia coli and that their expression is differentially modulated during the intracellular life of Shigella. In particular, the emrKY operon, encoding an efflux pump of the Major Facilitator Superfamily, is specifically and highly induced in Shigella-infected U937 macrophage-like cells and is activated in response to a combination of high K+ and acidic pH, which are sensed by the EvgS/EvgA two-component system. Notably, we show that following S. flexneri infection, macrophage cytosol undergoes a mild reduction of intracellular pH, permitting EvgA...
    Among the intestinal pathogenic , enteroinvasive (EIEC) are a group of intracellular pathogens able to enter epithelial cells of colon, multiplicate within them, and move between adjacent cells with a mechanism similar to , the... more
    Among the intestinal pathogenic , enteroinvasive (EIEC) are a group of intracellular pathogens able to enter epithelial cells of colon, multiplicate within them, and move between adjacent cells with a mechanism similar to , the ethiological agent of bacillary dysentery. Despite EIEC belong to the same pathotype of , they neither have the full set of traits that define nor have undergone the extensive gene decay observed in . Molecular analysis confirms that EIEC are widely distributed among phylogenetic groups and correspond to bioserotypes found in many serogroups. Like , also in EIEC the critical event toward a pathogenic life-style consisted in the acquisition by horizontal gene transfer of a large F-type plasmid (pINV) containing the genes required for invasion, intracellular survival, and spreading through the intestinal mucosa. In , the ample gain in virulence determinants has been counteracted by a substantial loss of functions that, although important for the survival in the...
    VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host... more
    VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF30 (30 kDa), and the shorter VirF21 (21 kDa), lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF30 and VirF21 and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF21 is also translated from a leaderless mRNA (llmRNA) whose 5' end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF21 The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis reveale...
    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu... more
    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and L...
    We describe identification and functional characterization of ISEc 11 , a new insertion sequence that is widespread in enteroinvasive E. coli (EIEC), in which it is always present on the virulence plasmid (pINV) and very frequently also... more
    We describe identification and functional characterization of ISEc 11 , a new insertion sequence that is widespread in enteroinvasive E. coli (EIEC), in which it is always present on the virulence plasmid (pINV) and very frequently also present on the chromosome. ISEc 11 is flanked by subterminal 13-bp inverted repeats (IRs) and is bounded by 3-bp terminal sequences, and it transposes with target specificity without generating duplication of the target site. ISEc 11 is characterized by an atypical transposase containing the DEDD motif of the Piv/MooV family of DNA recombinases, and it is closely related to the IS 1111 family. Transposition occurs by formation of minicircles through joining of the abutted ends and results in assembly of a junction promoter (P juncC ) containing a −10 box in the interstitial sequence and a −35 box upstream of the right IR. A natural variant of ISEc 11 (ISEc 11 p), found on EIEC pINV plasmids, contains a perfect duplication of the outermost 39 bp of th...
    A typical pathoadaptive mutation of Shigella and enteroinvasive Escherichia coli (EIEC) is the inactivation of the cad locus which comprises the genes necessary for lysine decarboxylation, an enzyme involved in pH homoeostasis. In E.... more
    A typical pathoadaptive mutation of Shigella and enteroinvasive Escherichia coli (EIEC) is the inactivation of the cad locus which comprises the genes necessary for lysine decarboxylation, an enzyme involved in pH homoeostasis. In E. coli, the cadBA operon, encoding lysine decarboxylase (CadA) and a lysine cadaverine antiporter (CadB), is submitted to the control of CadC, a positive activator whose gene maps upstream the operon, and is transcribed independently from the same strand. CadC is an integral inner membrane protein which acts both, as signal sensor and as transcriptional regulator responding to the low pH and lysine signals. Analysis of the molecular rearrangements responsible for the loss of lysine decarboxylase activity in Shigella and EIEC has revealed that the inactivation of the cadC gene is a common feature. The 3 major adaptive acid resistance (AR) systems - AR1, AR2, and AR3 - are known to be activated at low pH by Shigella and E. coli, allowing them to withstand extremely acid conditions. In this study, evaluating the survival of S. flexneri, S. sonnei, and EIEC strains complemented with a functional cadC gene and challenged at low pH, we present evidence that CadC negatively regulates the expression of the arginine-dependent adaptive acid-resistance system (AR3), encoded by the adi locus while it has no effect on the expression of AR1 and AR2 systems. Moreover, since our results indicate that in enteroinvasive strains the presence of CadC reduces the expression of the arginine decarboxylase encoding gene adiA, it is possible to hypothesize that the loss of functionality of lysine decarboxylase is counterbalanced by a higher expression of the adi system, and that CadC, besides specifically affecting the regulation of the cadBA operon, is also relevant to other systems responding to low pH.
    <p>The diagram depicts the pathway of polyamine biosynthesis in <i>E. coli</i>. Data are drawn from Ecocyc database <a... more
    <p>The diagram depicts the pathway of polyamine biosynthesis in <i>E. coli</i>. Data are drawn from Ecocyc database <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0106589#pone.0106589-Keseler1" target="_blank">[39]</a>. Dotted boxes: precursor aminoacids. AdoMet dec: S-Adenosyl-L-Methioninamine. MTA: S-Methyl-5′-Thioadenosine.</p
    Shigella, the etiological agent of bacillary dysentery (shigellosis), is a highly adapted human pathogen. It evolved from an innocuous ancestor resembling the Escherichia coli strain by gain and loss of genes and functions. While the gain... more
    Shigella, the etiological agent of bacillary dysentery (shigellosis), is a highly adapted human pathogen. It evolved from an innocuous ancestor resembling the Escherichia coli strain by gain and loss of genes and functions. While the gain process concerns the acquisition of the genetic determinants of virulence, the loss is related to the adaptation of the genome to the new pathogenic status and occurs by pathoadaptive mutation of antivirulence genes. In this study, we highlight that the SRRz/Rz1 lambdoid lysis cassette, even though stably adopted in E. coli K12 by virtue of its beneficial effect on cell physiology, has undergone a significant decay in Shigella. Moreover, we show the antivirulence nature of the SRRz/Rz1 lysis cassette in Shigella. In fact, by restoring the SRRz/Rz1 expression in this pathogen, we observe an increased release of peptidoglycan fragments, causing an unbalance in the fine control exerted by Shigella on host innate immunity and a mitigation of its virule...
    We have previously shown that integration of the virulence plasmid pINV into the chromosome of enteroinvasive Escherichia coli and of Shigella flexneri makes these strains noninvasive (C. Zagaglia, M. Casalino, B. Colonna, C. Conti, A.... more
    We have previously shown that integration of the virulence plasmid pINV into the chromosome of enteroinvasive Escherichia coli and of Shigella flexneri makes these strains noninvasive (C. Zagaglia, M. Casalino, B. Colonna, C. Conti, A. Calconi, and M. Nicoletti, Infect. Immun. 59:792-799, 1991). In this work, we have studied the transcription of the virulence regulatory genes virB, virF, and hns (virR) in wild-type enteroinvasive E. coli HN280 and in its pINV-integrated derivative HN280/32. While transcription of virF and of hns is not affected by pINV integration, transcription of virB is severely reduced even if integration does not occur within the virB locus. This indicates that VirF cannot activate virB transcription when pINV is integrated, and this lack of expression accounts for the noninvasive phenotype of HN280/32. Virulence gene expression in strains HN280 and HN280/32, as well as in derivatives harboring a mxiC::lacZ operon fusion either on the autonomously replicating p...
    We have investigated the major Escherichia coli histone-like proteins (H-NS, HU, FIS, and IHF) as putative factors involved in the maintenance of the overall DNA looped arrangement of the bacterial nucleoid. The long-range architecture of... more
    We have investigated the major Escherichia coli histone-like proteins (H-NS, HU, FIS, and IHF) as putative factors involved in the maintenance of the overall DNA looped arrangement of the bacterial nucleoid. The long-range architecture of the chromosome has been studied by means of an assay based on in vivo genomic fragmentation mediated by endogenous DNA gyrase in the presence of oxolinic acid. The fragmentation products were analysed by CHEF electrophoresis. The results indicate that in vivo a large fraction of the bacterial chromatin constitutes an adequate substrate for the enzyme. DNA fragments released upon oxo-treatment span a size range from about 1000 kb to a limit-size of about 50 kb. The latter value is in excellent agreement with the average size reported for bacterial chromosomal domains. The DNA gyrase-mediated fragmentation does not appear to be significantly altered in strains depleted in histone-like proteins as compared to an E. coli wild type strain. This suggests that these proteins may not represent critical determinants for the maintenance of the supercoiled loop organisation of the E. coli chromosome.
    Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the... more
    Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery, has undergone drastic genomic rearrangements affecting the polyamine profile. A pathoadaptation process involving the speG gene and the cad operon has led to spermidine accumulation and loss of cadaverine. While a higher spermidine content promotes the survival of Shigella within infected macrophages, the lack of cadaverine boosts the pathogenic potential of the bacterium in host tissues. Enteroinvasive E. coli (EIEC) display the same pathogenicity process as Shigella, but have a higher infectious dose and a higher metabolic activity. Pathoadaption events affecting the cad locus have occurred also in EIEC, silencing cadaverine production. Since EIEC are commonly regarded as evolutionary intermediates between E. coli and Shigella, we investigated on their polyamine profile in order to better understand which changes have occurred along the path to pathogenicity. By functional and molecular analyses carried out in EIEC strains belonging to different serotypes, we show that speG has been silenced in one strain only, favouring resistance to oxidative stress conditions and survival within macrophages. At the same time, we observe that the content of spermidine and putrescine, a relevant intermediate in the synthesis of spermidine, is higher in all strains as compared to E. coli. This may represent an evolutionary response to the lack of cadaverine. Indeed, restoring cadaverine synthesis decreases the expression of the speC gene, whose product affects putrescine production. In the light of these results, we discuss the possible impact of pathoadaptation events on the evolutionary emergence of a polyamine profile favouring to the pathogenic lifestyle of Shigella and EIEC.

    And 15 more