Skip to main content

Satu Lehti

Objective: Secondary lymphedema (LE) following breast cancer surgery is a life-long complication, which currently has no cure. LE induces significant regional adipose tissue deposition, requiring liposuction as a treatment. Here, we aimed... more
Objective: Secondary lymphedema (LE) following breast cancer surgery is a life-long complication, which currently has no cure. LE induces significant regional adipose tissue deposition, requiring liposuction as a treatment. Here, we aimed to elucidate the transcriptional, metabolomic, and lipidomic signature of the adipose tissue developed due to the surgery-induced LE in short- and long-term LE patients, and compared the transcriptomic landscape in LE to the obesity-induced adipose tissue. Methods: Adipose tissue biopsies were obtained from breast cancer-operated females with LE from the affected and non-affected arms (n=20 patients). To decipher molecular properties of the LE adipose tissue, we performed RNA sequencing, metabolomics, and lipidomics combined with bioinformatics analyses. Results: Integrative analysis of functional genomics revealed that inflammatory response, cell chemotaxis and angiogenesis were upregulated biological processes in the LE arm, indicating a sustaine...
The accurate spatial distribution of various lipid species during atherogenesis has remained unexplored. Herein, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) to analyze the lipid distribution in human coronary artery... more
The accurate spatial distribution of various lipid species during atherogenesis has remained unexplored. Herein, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) to analyze the lipid distribution in human coronary artery cryosections. The images from the TOF-SIMS allowed visualization of ions derived from individual species of cholesterol esters, phospholipids, and triacylglycerols in the context of lesion characteristics and severity. In addition, cholesterol-containing crystal-like structures were seen in high-resolution images of advanced lesions. The ratio of cholesterol fragment ions (m/z 385/m/z 369) was found to differentiate unesterified cholesterol from cholesterol esters. This ratio changed during atherogenesis and in different areas of the lesions, reflecting differences in the accumulation of the two forms of cholesterol. Thus, atheromas were characterized by accumulation of cholesterol esters with apolipoprotein B near the intima-media border, whereas i...
ObjectiveLoss of sex hormones has been suggested to underlie menopause-associated increment in cardiovascular risk. We investigated associations of sex hormones with arterial stiffness in 19–58-years-old women. We also studied... more
ObjectiveLoss of sex hormones has been suggested to underlie menopause-associated increment in cardiovascular risk. We investigated associations of sex hormones with arterial stiffness in 19–58-years-old women. We also studied associations of specific hormonal stages, including natural menstrual cycle, cycle with combined oral contraceptives (COC) and menopausal status with or without hormone therapy (HT), with arterial stiffness.MethodsThis study includes repeated measurements of 65 healthy women representing reproductive (n=16 natural, n=10 COC-users) and menopause (n=5 perimenopausal, n=26 postmenopausal, n=8 HT-users) stages. Arterial stiffness outcomes were aortic pulse wave velocity (PWVao) and augmentation index (AIx%) assessed using Arteriograph-device. Generalized estimating equation models were constructed to investigate associations of each hormone (wide age-range models) or hormonal stage (age-group focused models) with arterial stiffness. PWVao models with cross-section...
Saccular intracranial aneurysm (sIA) rupture leads to a disabling subarachnoid hemorrhage. Chronic inflammation and lipid accumulation in the sIA wall contribute to wall degenerative remodeling that precedes its rupture. A better... more
Saccular intracranial aneurysm (sIA) rupture leads to a disabling subarachnoid hemorrhage. Chronic inflammation and lipid accumulation in the sIA wall contribute to wall degenerative remodeling that precedes its rupture. A better understanding of the pathobiological process is essential for improved future treatment of patients carrying sIAs. Serum amyloid A (SAA) is an acute-phase protein produced in response to acute and chronic inflammation and tissue damage. Here, we studied the presence and the potential role of SAA in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), that had previously been studied by histology and immunohistochemistry. SAA was present in all sIAs, but the extent of immunopositivity varied greatly. SAA immunopositivity correlated with wall degeneration (p = 0.028) and rupture (p = 0.004), with numbers of CD163-positive and CD68-positive macrophages and CD3-positive T lymphocytes (all p < 0.001), and with the expression of myeloperoxidase, ...
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins (chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and cholesterol-rich low-density lipoprotein particles. Of these,... more
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins (chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and cholesterol-rich low-density lipoprotein particles. Of these, lipoproteins having sizes below 70-80 nm may enter the arterial wall, where they accumulate and induce the formation of atherosclerotic lesions. The processes that lead to accumulation of lipoprotein-derived lipids in the arterial wall have been largely studied with a focus on the low-density lipoprotein particles. However, recent observational and genetic studies have discovered that the triglyceriderich lipoproteins and their remnants are linked with cardiovascular disease risk. In this review, we describe the potential mechanisms by which the triglyceride-rich remnant lipoproteins can contribute to the development of atherosclerotic lesions, and highlight the differences in the atherogenicity between low-density lipoproteins and the remnant lipoprot...
Rupture of a saccular intracranial aneurysm (sIA) is often fatal. Thus, early detection of rupture-prone sIAs is vital. Myeloperoxidase (MPO), derived mainly from neutrophils, associates with sIA rupture, and therefore its role in sIA... more
Rupture of a saccular intracranial aneurysm (sIA) is often fatal. Thus, early detection of rupture-prone sIAs is vital. Myeloperoxidase (MPO), derived mainly from neutrophils, associates with sIA rupture, and therefore its role in sIA pathogenesis warrants further studies. We analyzed MPO and its association with other histological markers in 36 (16 unruptured and 20 ruptured) sIA samples by immunohistochemistry. MPO was present in all studied sIAs, and its expression associated with wall inflammatory cell infiltrations (r = 0.50, 0.63, and 0.75, all p ≤ 0.002), degenerative remodeling (p = 0.002) and rupture (p = 0.003). MPO associated strongly with the presence of organized luminal thrombi (p < 0.001), which also stained positive for MPO. Polymorphonuclear MPO+ cells were detected in the sIA walls, indicating neutrophils as MPO-source. MPO correlated strongly with accumulation of oxidized lipids (r = 0.67, p < 0.001) and loss of smooth muscle cells (r = -0.68, p < 0.001),...
Saccular intracranial aneurysm (sIA) aneurysm causes intracranial hemorrhages that are associated with high mortality. Lipid accumulation and chronic inflammation occur in the sIA wall. A major mechanism for lipid clearance from arteries... more
Saccular intracranial aneurysm (sIA) aneurysm causes intracranial hemorrhages that are associated with high mortality. Lipid accumulation and chronic inflammation occur in the sIA wall. A major mechanism for lipid clearance from arteries is adenosine triphosphate-binding cassette A1 (ABCA1)-mediated lipid efflux from foam cells to apolipoprotein A-I (apoA-I). We investigated the association of wall degeneration, inflammation, and lipid-related parameters in tissue samples of 16 unruptured and 20 ruptured sIAs using histology and immunohistochemistry. Intracellular lipid accumulation was associated with wall remodeling (p = 0.005) and rupture (p = 0.020). Foam cell formation was observed in smooth muscle cells, in addition to CD68- and CD163-positive macrophages. Macrophage infiltration correlated with intracellular lipid accumulation and apolipoproteins, including apoA-I. ApoA-I correlated with markers of lipid accumulation and wall degeneration (p = 0.01). ApoA-I-positive staining ...
Lipid accumulation is a key characteristic of advancing atherosclerotic lesions. Herein, we analyzed the ultrastructure of the accumulated lipids in endarterectomized human carotid atherosclerotic plaques using three-dimensional (3D)... more
Lipid accumulation is a key characteristic of advancing atherosclerotic lesions. Herein, we analyzed the ultrastructure of the accumulated lipids in endarterectomized human carotid atherosclerotic plaques using three-dimensional (3D) electron microscopy, a method never used in this context before. 3D electron microscopy revealed intracellular lipid droplets and extracellular lipoprotein particles. Most of the particles were aggregated, and some connected to needle-shaped or sheet-like cholesterol crystals. Proteomic analysis of isolated extracellular lipoprotein particles revealed that apolipoprotein B is their main protein component, indicating their origin from low-density lipoprotein, intermediate-density lipoprotein, very-low-density lipoprotein, lipoprotein (a), or chylomicron remnants. The particles also contained small exchangeable apolipoproteins, complement components, and immunoglobulins. Lipidomic analysis revealed differences between plasma lipoproteins and the particles...
The accurate spatial distribution of various lipid species during atherogenesis has remained unexplored. Herein, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) to analyze the lipid distribution in human coronary artery... more
The accurate spatial distribution of various lipid species during atherogenesis has remained unexplored. Herein, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) to analyze the lipid distribution in human coronary artery cryosections. The images from the TOF-SIMS allowed visualization of ions derived from individual species of cholesterol esters, phospholipids, and triacylglycerols in the context of lesion characteristics and severity. In addition, cholesterol-containing crystal-like structures were seen in high-resolution images of advanced lesions. The ratio of cholesterol fragment ions (m/z 385/m/z 369) was found to differentiate unesterified cholesterol from cholesterol esters. This ratio changed during atherogenesis and in different areas of the lesions, reflecting differences in the accumulation of the two forms of cholesterol. Thus, atheromas were characterized by accumulation of cholesterol esters with apolipoprotein B near the intima-media border, whereas i...
Accelerated arteriosclerosis remains a major limitation to therapeutic interventions such as angioplasty, stent deployment, and solid organ transplantation. Rapamycin, a powerful new immunosuppressant set to replace calcineurin inhibitors... more
Accelerated arteriosclerosis remains a major limitation to therapeutic interventions such as angioplasty, stent deployment, and solid organ transplantation. Rapamycin, a powerful new immunosuppressant set to replace calcineurin inhibitors in the transplant setting, and imatinib mesylate, a receptor tyrosine kinase inhibitor, are both angioprotective. Here, we explored the pharmacological and therapeutic interactions of these two agents in a rat model of neointimal hyperplasia. Wistar rats, subjected to balloon catheter-induced aortic injury, received daily drug treatment until postoperative day 14 and were subsequently sacrificed or followed up to day 40 without further treatment. Development of neointimal lesions was assessed histologically and immunohistochemically. Steady-state rapamycin levels in whole blood were determined by HPLC-UV. Rapamycin and imatinib, administered individually or in combination, produced no signs of overt toxicity. Continuous postoperative therapy with either rapamycin (0.5-1.5 mg/kg/day) or imatinib (2- 50 mg/kg/day) dose-dependently suppressed neointimal hyperplasia on day 14. Combined treatment (0.5 or 1 + 10 mg/kg/day, respectively) showed a trend towards synergistic action on day 14. Withdrawal of medication on day 14 nullified the early therapeutic effect of either agent by day 40. In contrast, early combination therapy (1 + 10 mg/kg/day) achieved long-term suppression of neointimal hyperplasia by approximately 81%. Notably, coadministration of imatinib appeared to reduce exposure to rapamycin, although this finding did not reach statistical significance. Short-term combination therapy with rapamycin and imatinib is well tolerated and produces synergistic, sustained suppression of neointimal hyperplasia in rats. Subject to clinical evaluation, this new drug regimen may afford definitive prophylaxis against accelerated arteriosclerosis.
Recent studies indicate that the smooth muscle-like cells contributing to neointimal hyperplasia after vascular injury derive from circulating precursor cells. Here, we define the time course of precursor cell influx, the roles of... more
Recent studies indicate that the smooth muscle-like cells contributing to neointimal hyperplasia after vascular injury derive from circulating precursor cells. Here, we define the time course of precursor cell influx, the roles of separate vascular layers, and the relative role of migration versus proliferation to intimal hyperplasia. After rat aortic denudation injury the neointimal cell number increased several 100-fold between days 4 and 28, preceded by a 5-fold increase in the number of adventitial cells and a 4-fold increase in the number of adventitial microvessels. The influx, migration, and maturation of neointimal cells were quantitated by culturing whole vessel explants at different time points after injury. Explant outgrowth increased 14-fold, and cell migration 3.5-fold on days 2-14 after injury. Cell proliferation increased less than 2-fold. The frequency of precursors to outgrowing cells, determined using limiting dilution analysis, increased 8-fold between days 2 and 4 after injury. Many outgrowing cells displayed characteristics of undifferentiated cells. Adventitial activation precedes development of the neointima, and precursor cell influx occurs on days 2-14 after injury. Cell migration, more than proliferation, contributes to fibrointimal dysplasia. These findings underline the importance of early therapeutic intervention with antimigratory compounds to prevent neointimal hyperplasia.
We have shown that the combination of sirolimus and imatinib synergistically inhibits denudation-induced neointimal hyperplasia in rats. We have now dissected the mechanisms behind this synergy and evaluated its long-term efficacy. After... more
We have shown that the combination of sirolimus and imatinib synergistically inhibits denudation-induced neointimal hyperplasia in rats. We have now dissected the mechanisms behind this synergy and evaluated its long-term efficacy. After aortic denudation injury, rats received established submaximal doses of sirolimus (1.0 mg/kg/day), imatinib (10.0 mg/kg/day), the combination of these, or vehicle per os from 3 days before the operation until 14 days after injury. Vessel histology and complete blood counts were monitored until 90 days after injury. Neointimal cell outgrowth, migration and proliferation were evaluated in ex vivo vessel cultures. Quantitative real-time polymerase chain reaction and immunohistochemistry were used for gene and protein expression analysis. The combination therapy caused a synergistic decrease in the number of neointimal nuclei and area throughout the observation period. It also prevented postinjury thrombocytosis and leukocytosis, and almost abolished neointimal cell outgrowth and migration. Furthermore, the combination therapy resulted in upregulation of smooth muscle cell (SMC) markers SM22alpha and cysteine and glycine-rich protein 2, and of the anti-apoptotic BCL2 mRNA. Combination therapy confers superior long-term vasculoprotection, possibly by inhibition of postoperative thrombocytosis and leukocytosis, inhibition of neointimal cell migration to the injury site and maintenance of cell integrity by inhibition of apoptosis and SMC dedifferentiation.
Background:  Previous work in type-I pollen allergies has mainly focused on lymphocytes and immune responses. Here, we begin to analyse with a systems biology view the differences in conjunctival epithelium obtained from healthy and... more
Background:  Previous work in type-I pollen allergies has mainly focused on lymphocytes and immune responses. Here, we begin to analyse with a systems biology view the differences in conjunctival epithelium obtained from healthy and allergic subjects.Methods:  Transcriptomics analysis combined with light and electron microscopic analysis of birch pollen allergen Bet v 1 located within conjunctival epithelial cells and tissues from birch allergic subjects and healthy controls was carried out.Results:  Bet v 1 pollen allergen bound to conjunctival epithelial cells within minutes after the exposure even during the nonsymptomatic winter season only in allergic, but not in healthy individuals. Light- and electron microscopy showed that Bet v 1 was transported through the epithelium within lipid rafts/caveolae and reached mast cells only in allergic patients, but not in healthy individuals. Transcriptomics yielded 22 putative receptors expressed at higher levels in allergic epithelium compared with healthy specimens. A literature search indicated that out of these receptors, eight (i.e. 37%) were associated with lipid rafts/caveolae, which suggested again that Bet v 1 transport is lipid raft/caveola-dependent.Conclusions:  We show a clear difference in the binding and uptake of Bet v 1 allergen by conjunctival epithelial cells in allergic vs healthy subjects and several putative lipid raft/caveolar receptors were identified, which could mediate or be co-transported with this entry. The application of discovery driven methodologies on human conjunctival epithelial cells and tissues can provide new hypotheses worth a further analysis to the molecular mechanisms of a complex multifactorial disease such as type-I birch pollen allergy.