-
Notifications
You must be signed in to change notification settings - Fork 24.3k
added type hints to lazy_property
#144106
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
added type hints to lazy_property
#144106
Conversation
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/144106
Note: Links to docs will display an error until the docs builds have been completed. ❌ 1 New Failure, 5 PendingAs of commit ef2329f with merge base 0431d47 ( NEW FAILURE - The following job has failed:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
This PR needs a
|
@pytorchbot label "module: typing" |
@pytorchbot label "module: distributions" |
….distributions`. (#144110) Fixes #76772, #144196 Extends #144106 - added type annotations to `lazy_property`. - added type annotation to all `@property` and `@lazy_property` inside `torch.distributions` module. - added simply type-check unit test to ensure type inference is working. - replaced deprecated annotations like `typing.List` with the corresponding counterpart. - simplified `torch.Tensor` hints with plain `Tensor`, otherwise signatures can become very verbose. Pull Request resolved: #144110 Approved by: https://github.com/Skylion007
…`. (#144197) Fixes #144196 Extends #144106 and #144110 ## Open Problems: - [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. #144197 (comment) # Notes - `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped. - `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ #144402 - `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. #144218 - `independent.py`: made `Independent` a generic class of its base distribution. - `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - `relaxed_bernoulli.py`: added class-level type hint for `base_dist`. - `relaxed_categorical.py`: added class-level type hint for `base_dist`. - ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ #144401 - ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ #144400 - `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`. - `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1]. - `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`. - skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`. ## Remark `TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`. ```python import torch from torch.distributions import * b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0])) b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1)) t = StickBreakingTransform() d1 = TransformedDistribution(b1, t) d2 = TransformedDistribution(b2, t) print(d1.base_dist) # Independent with 1 dimension print(d2.base_dist) # MultivariateNormal ``` One could consider changing this to `if reinterpreted_batch_ndims > 1:`. [^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <python/mypy#3186>). This results in us having to add type-ignore comments in several places [^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped. Pull Request resolved: #144197 Approved by: https://github.com/malfet Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
…`. (pytorch#144197) Fixes pytorch#144196 Extends pytorch#144106 and pytorch#144110 ## Open Problems: - [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. pytorch#144197 (comment) # Notes - `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped. - `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ pytorch#144402 - `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. pytorch#144218 - `independent.py`: made `Independent` a generic class of its base distribution. - `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - `relaxed_bernoulli.py`: added class-level type hint for `base_dist`. - `relaxed_categorical.py`: added class-level type hint for `base_dist`. - ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ pytorch#144401 - ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ pytorch#144400 - `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`. - `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1]. - `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`. - skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`. ## Remark `TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`. ```python import torch from torch.distributions import * b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0])) b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1)) t = StickBreakingTransform() d1 = TransformedDistribution(b1, t) d2 = TransformedDistribution(b2, t) print(d1.base_dist) # Independent with 1 dimension print(d2.base_dist) # MultivariateNormal ``` One could consider changing this to `if reinterpreted_batch_ndims > 1:`. [^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <python/mypy#3186>). This results in us having to add type-ignore comments in several places [^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped. Pull Request resolved: pytorch#144197 Approved by: https://github.com/malfet Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
…`. (pytorch#144197) Fixes pytorch#144196 Extends pytorch#144106 and pytorch#144110 ## Open Problems: - [ ] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. pytorch#144197 (comment) # Notes - `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped. - `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ pytorch#144402 - `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. pytorch#144218 - `independent.py`: made `Independent` a generic class of its base distribution. - `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - `relaxed_bernoulli.py`: added class-level type hint for `base_dist`. - `relaxed_categorical.py`: added class-level type hint for `base_dist`. - ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ pytorch#144401 - ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ pytorch#144400 - `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`. - `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1]. - `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`. - skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`. ## Remark `TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`. ```python import torch from torch.distributions import * b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0])) b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1)) t = StickBreakingTransform() d1 = TransformedDistribution(b1, t) d2 = TransformedDistribution(b2, t) print(d1.base_dist) # Independent with 1 dimension print(d2.base_dist) # MultivariateNormal ``` One could consider changing this to `if reinterpreted_batch_ndims > 1:`. [^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <python/mypy#3186>). This results in us having to add type-ignore comments in several places [^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped. Pull Request resolved: pytorch#144197 Approved by: https://github.com/malfet Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
Partial fix for #76772, it remains to add type hints to all the properties of the predefined distribution objects.
EDIT: #144110 builds on top of this PR and provides these type hints.
cc @fritzo @neerajprad @alicanb @nikitaved @ezyang @malfet @xuzhao9 @gramster