8000 DOC: switch pylab example `mri_with_eeg.py` to OO interface + cosmetick fixes by afvincent · Pull Request #7192 · matplotlib/matplotlib · GitHub
[go: up one dir, main page]

Skip to content

DOC: switch pylab example mri_with_eeg.py to OO interface + cosmetick fixes #7192

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Switch to triple quotes comment blocks as visual separators
  • Loading branch information
afvincent committed Sep 28, 2016
commit d06e57283f97d6d014085dd8f24e73c7f9c39f22
125 changes: 67 additions & 58 deletions examples/pylab_examples/mri_with_eeg.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,66 +14,75 @@
from matplotlib.collections import LineCollection
from matplotlib.ticker import MultipleLocator

# NB: one uses "if 1:" to break up the different regions of code visually
fig = plt.figure("MRI_with_EEG")

if 1: # Load the data
# Data are 256x256 16 bit integers
dfile = cbook.get_sample_data('s1045.ima.gz')
im = np.fromstring(dfile.read(), np.uint16).astype(float)
im.shape = (256, 256)

if 1: # Plot the MRI image
ax0 = fig.add_subplot(2, 2, 1)
ax0.imshow(im, cmap=cm.gray)
ax0.axis('off')

if 1: # Plot the histogram of MRI intensity
ax1 = fig.add_subplot(2, 2, 2)
im = np.ravel(im)
im = im[np.nonzero(im)] # Ignore the background
im = im / (2**15) # Normalize
ax1.hist(im, 100)
ax1.xaxis.set_major_locator(MultipleLocator(0.5))
ax1.set_yticks([])
ax1.set_xlabel('Intensity')
ax1.set_ylabel('MRI density')

if 1: # Plot the EEG
# Load the data
numSamples, numRows = 800, 4
eegfile = cbook.get_sample_data('eeg.dat', asfileobj=False)
print('Loading EEG %s' % eegfile)
data = np.fromstring(open(eegfile, 'rb').read(), float)
data.shape = (numSamples, numRows)
t = 10.0 * np.arange(numSamples) / numSamples
ticklocs = []
ax2 = fig.add_subplot(2, 1, 2)
ax2.set_xlim(0, 10)
ax2.set_xticks(np.arange(10))
dmin = data.min()
dmax = data.max()
dr = (dmax - dmin) * 0.7 # Crowd them a bit.
y0 = dmin
y1 = (numRows - 1) * dr + dmax
ax2.set_ylim(y0, y1)

segs = []
for i in range(numRows):
segs.append(np.hstack((t[:, np.newaxis], data[:, i, np.newaxis])))
ticklocs.append(i * dr)

offsets = np.zeros((numRows, 2), dtype=float)
offsets[:, 1] = ticklocs

lines = LineCollection(segs, offsets=offsets, transOffset=None)
ax2.add_collection(lines)

# Set the yticks to use axes coords on the y axis
ax2.set_yticks(ticklocs)
ax2.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])

ax2.set_xlabel('Time (s)')
"""
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am sorry, but I still don't like this. This is also python code, meant for a specific purpose. Can you switch to comments?

Load the data
"""
# Data are 256x256 16 bit integers
dfile = cbook.get_sample_data('s1045.ima.gz')
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This file should be closed.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

get_sample_data should probably be deprecated and replaced with something with a sane interface.
In any case, python will close that file automatically at the end of the script without problems considering it is a read-only file.

im = np.fromstring(dfile.read(), np.uint16).astype(float)
im.shape = (256, 256)

"""
Plot the MRI image
"""
ax0 = fig.add_subplot(2, 2, 1)
ax0.imshow(im, cmap=cm.gray)
ax0.axis('off')

"""
Plot the histogram of MRI intensity
"""
ax1 = fig.add_subplot(2, 2, 2)
im = np.ravel(im)
im = im[np.nonzero(im)] # Ignore the background
im = im / (2**15) # Normalize
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So this is how it was originally, but I'm not sure if it's right. The intensities go over 1 and a uint16 should have a maximum of 2**16, but maybe this just how MRIs are defined? I don't know, but it seems odd.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ping @matthew-brett our resident expert on MRI :)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I agree that this normalization seemed weird to me too but I did not feel comfortable changing it to (2**16 - 1) as I do not know anything about MRI. PS: anyway, currently there are no units for the MRI...

ax1.hist(im, 100)
ax1.xaxis.set_major_locator(MultipleLocator(0.5))
ax1.set_yticks([])
ax1.set_xlabel('Intensity')
ax1.set_ylabel('MRI density')

"""
Plot the EEG
"""
# Load the data
numSamples, numRows = 800, 4
eegfile = cbook.get_sample_data('eeg.dat', asfileobj=False)
print('Loading EEG %s' % eegfile)
data = np.fromstring(open(eegfile, 'rb').read(), float)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Leaky open; can use np.fromfile(eegfile, float) instead

data.shape = (numSamples, numRows)
t = 10.0 * np.arange(numSamples) / numSamples

ticklocs = []
ax2 = fig.add_subplot(2, 1, 2)
ax2.set_xlim(0, 10)
ax2.set_xticks(np.arange(10))
dmin = data.min()
dmax = data.max()
dr = (dmax - dmin) * 0.7 # Crowd them a bit.
y0 = dmin
y1 = (numRows - 1) * dr + dmax
ax2.set_ylim(y0, y1)

segs = []
for i in range(numRows):
segs.append(np.hstack((t[:, np.newaxis], data[:, i, np.newaxis])))
ticklocs.append(i * dr)

offsets = np.zeros((numRows, 2), dtype=float)
offsets[:, 1] = ticklocs

lines = LineCollection(segs, offsets=offsets, transOffset=None)
ax2.add_collection(lines)

# Set the yticks to use axes coords on the y axis
ax2.set_yticks(ticklocs)
ax2.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])

ax2.set_xlabel('Time (s)')


plt.tight_layout()
plt.show()
0