8000 DOC: switch pylab example `mri_with_eeg.py` to OO interface + cosmetick fixes by afvincent · Pull Request #7192 · matplotlib/matplotlib · GitHub
[go: up one dir, main page]

Skip to content

DOC: switch pylab example mri_with_eeg.py to OO interface + cosmetick fixes #7192

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
DOC: switch to pyplot OO interface
  • Loading branch information
afvincent committed Sep 28, 2016
commit 86bf3359d5af20fe912f5e75915e820d6900cfd1
60 changes: 30 additions & 30 deletions examples/pylab_examples/mri_with_eeg.py
5795
Original file line number Diff line number Diff line change
Expand Up @@ -6,33 +6,36 @@
from __future__ import division, print_function

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import matplotlib.cm as cm

from matplotlib.pyplot import *
from matplotlib.collections import LineCollection
import matplotlib.cbook as cbook
# I use if 1 to break up the different regions of code visually

fig = plt.figure("MRI_with_EEG")

if 1: # load the data
# data are 256x256 16 bit integers
dfile = cbook.get_sample_data('s1045.ima.gz')
im = np.fromstring(dfile.read(), np.uint16).astype(float)
im.shape = 256, 256
im.shape = (256, 256)

if 1: # plot the MRI in pcolor
subplot(221)
imshow(im, cmap=cm.gray)
axis('off')
ax0 = fig.add_subplot(2, 2, 1)
ax0.imshow(im, cmap=cm.gray)
ax0.axis('off')

if 1: # plot the histogram of MRI intensity
subplot(222)
ax1 = fig.add_subplot(2, 2, 2)
im = np.ravel(im)
im = im[np.nonzero(im)] # ignore the background
im = im/(2.0**15) # normalize
hist(im, 100)
xticks([-1, -.5, 0, .5, 1])
yticks([])
xlabel('intensity')
ylabel('MRI density')
im = im / (2**15) # normalize
ax1.hist(im, 100)
ax1.set_xticks([-1, -0.5, 0, 0.5, 1])
ax1.set_yticks([])
ax1.set_xlabel('intensity')
ax1.set_ylabel('MRI density')

if 1: # plot the EEG
# load the data
Expand All @@ -41,37 +44,34 @@
eegfile = cbook.get_sample_data('eeg.dat', asfileobj=False)
print('loading eeg %s' % eegfile)
data = np.fromstring(open(eegfile, 'rb').read(), float)
data.shape = numSamples, numRows
t = 10.0 * np.arange(numSamples, dtype=float)/numSamples
data.shape = (numSamples, numRows)
t = 10.0 * np.arange(numSamples) / numSamples
ticklocs = []
ax = subplot(212)
xlim(0, 10)
xticks(np.arange(10))
ax2 = fig.add_subplot(2, 1, 2)
ax2.set_xlim(0, 10)
ax2.set_xticks(np.arange(10))
dmin = data.min()
dmax = data.max()
dr = (dmax - dmin)*0.7 # Crowd them a bit.
dr = (dmax - dmin) * 0.7 # Crowd them a bit.
y0 = dmin
y1 = (numRows - 1) * dr + dmax
ylim(y0, y1)
ax2.set_ylim(y0, y1)

segs = []
for i in range(numRows):
segs.append(np.hstack((t[:, np.newaxis], data[:, i, np.newaxis])))
ticklocs.append(i*dr)
ticklocs.append(i * dr)

offsets = np.zeros((numRows, 2), dtype=float)
offsets[:, 1] = ticklocs

lines = LineCollection(segs, offsets=offsets,
transOffset=None,
)

ax.add_collection(lines)
lines = LineCollection(segs, offsets=offsets, transOffset=None)
ax2.add_collection(lines)

# set the yticks to use axes coords on the y axis
ax.set_yticks(ticklocs)
ax.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])
ax2.set_yticks(ticklocs)
ax2.set_yticklabels(['PG3', 'PG5', 'PG7', 'PG9'])

xlabel('time (s)')
ax2.set_xlabel('time (s)')

show()
plt.show()
0