Skip to main content
This study assesses the ability of climate models to represent rainy season (RS) dependent climate indices relevant for agriculture and crop-specific agricultural indices in eleven African subregions. For this, we analyze model ensembles... more
This study assesses the ability of climate models to represent rainy season (RS) dependent climate indices relevant for agriculture and crop-specific agricultural indices in eleven African subregions. For this, we analyze model ensembles build from Regional Climate Models (RCMs) from CORDEX-CORE (RCM_hist) and their respective driving General Circulation Models (GCMs) from CMIP5 (GCM_hist). Those are compared with gridded reference data including reanalyses at high spatio-temporal resolution (≤ 0.25°, daily) over the climatological period 1981–2010. Furthermore, the ensemble of RCM-evaluation runs forced by ERA-Interim (RCM_eval) is considered. Beside precipitation indices like the precipitation sum or number of rainy days annually and during the RS, we examine three agricultural indices (crop water need (CWN), irrigation requirement, water availability), depending on the RS’ onset. The agricultural-relevant indices as simulated by climate models, including CORDEX-CORE, are assessed...
The study uses numerical weather prediction models to predict the occurrence of heavy convective rainfall associated with the passage of the African Easterly Wave (AEW) during the period 23–26 August 2017 over Nigeria. Fraction skill... more
The study uses numerical weather prediction models to predict the occurrence of heavy convective rainfall associated with the passage of the African Easterly Wave (AEW) during the period 23–26 August 2017 over Nigeria. Fraction skill score (FSS) and method for object‐based diagnostic evaluation (MODE) verification techniques were applied to verify how well the models predict the high‐impact event and to demonstrate how these tools can support operational forecasting. Ensemble model forecasts at a convective scale from UK Met Office Unified Model (MetUM) and a one‐way nested weather research and forecasting (WRF) model were compared with the integrated multisatellite retrievals for global precipitation measurement (IMERG GPM). The purpose is to examine skills of improved model resolution and ensemble in reproducing rainfall forecasts on useful scales and how the skill varies with spatial scale. WRF 2 and 6 km model forecasts show comparable skill at smaller grid scales. The skill of ...
Information on the onset and cessation of rainy seasons is an important prerequisite for planning the sowing of crops in West Africa. A late onset, but also too early cessation of a rainy season, has a direct impact on plant growth and... more
Information on the onset and cessation of rainy seasons is an important prerequisite for planning the sowing of crops in West Africa. A late onset, but also too early cessation of a rainy season, has a direct impact on plant growth and thus on the crop yield in the region. However, onset and cessation dates of rainy seasons can change under future climatic conditions. Therefore, this information is key for stakeholders and decision-makers to mainstream climate change into agricultural activities and policies for better adaptation in the region.To obtain information on the onset and cessation of rainy seasons on a regional scale under future climate change, Regional Climate Models (RCMs) are applied to dynamically downscale global climate projections generated by Earth System Models (ESMs). Therefore, regional climate projections provide more detailed information due to the higher spatial resolution compared to the climate projections generated by ESMs.The study will show initial res...
The frequency of flash floods resulting from heavy rainfall over West Africa has increased in recent years with serious socio‐economic consequences. Therefore, the need to utilize numerical weather prediction models to forecast heavy... more
The frequency of flash floods resulting from heavy rainfall over West Africa has increased in recent years with serious socio‐economic consequences. Therefore, the need to utilize numerical weather prediction models to forecast heavy rainfall events reliably is also rising at many operational meteorological centres in West Africa. This paper evaluates the performance of the Consortium for Small‐scale Modelling (COSMO) model of the German Meteorological Services (DWD) in predicting rainfall over West Africa for high‐impact rainfall events that occurred between 19 and 26 August 2017. The paper aims to investigate the synoptic forcings modulating daily rainfall variability during that period. Results show that COSMO simulates adequately the spatio‐temporal variability of rainfall distribution over West Africa, though with inherent biases. COSMO displays a decreasing skill in producing spatial rainfall distribution as rainfall amounts tend to 30 mm and above. Additionally, areas of heav...
Climate variability and change greatly affect agricultural and water resource management over West Africa. This paper presents the current characteristics and projected change in regional crop water demand (CWD), irrigation requirement... more
Climate variability and change greatly affect agricultural and water resource management over West Africa. This paper presents the current characteristics and projected change in regional crop water demand (CWD), irrigation requirement (IR), and water availability (WA) over West Africa. Observed and simulated daily rainfall, minimum temperature, maximum temperature, and evapotranspiration are used to derive the above agro-meteorological and hydrological variables. For future periods, high-resolution climate data from three regional climate models under two different scenarios, i.e., representative concentration pathway (RCP) 4.5 and 8.5, are considered. Evaluation of the characteristics of present-day CWD, IR, and WA indicated that the ensemble mean of the model-derived outputs reproduced the prevailing spatial patterns of CWD and IR. Moreover, the wetter part of the domain, especially along the southern coast, was correctly delineated from the drier northern regions, despite having...
<p align="justify"><span>Agriculture in West Africa is highly dependent on rainfall during the rainy seasons. Therefore, modifications in rainy season characteristics due to... more
<p align="justify"><span>Agriculture in West Africa is highly dependent on rainfall during the rainy seasons. Therefore, modifications in rainy season characteristics due to recent and future climate change have a direct impact on crop yields and production in the region. Consequently, stakeholders and decision-makers need reliable regional climate change information on rainy seasons in order to develop appropriate adaptation measures.</span></p><p align="justify"><span>Regional Climate Models (RCMs) can provide information on climate change at high temporal and spatial resolution through dynamic downscaling of climate projections generated by Earth System Models (ESMs). In order to assess the performance of RCMs in simulating rainy seasons and their characteristics such as onset and cessation, length and total sum of rainfall, a thorough evaluation of RCMs is required.</span></p><p align="justify"><span>The current study evaluates the performance of three different RCMs (REMO2015, RegCM4-7 and CCLM5-0-15) in simulating rainy seasons in West Africa using gridded observational data sets. For the assessment, we will use the ERA-INTERIM driven simulations of the RCMs from the Coordinated Output for Regional Evaluations (CORE) embedded in the WCRP Coordinated Regional Climate Downscaling Experiment (CORDEX) for Africa with a spatial resolution of about 25 km.</span></p>
This study evaluates the ability of three Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX) to simulate the characteristics of rainfall pattern during the West Africa Summer Monsoon from... more
This study evaluates the ability of three Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX) to simulate the characteristics of rainfall pattern during the West Africa Summer Monsoon from 1998 to 2008. The seasonal climatology, annual rainfall cycles, and wind fields of the RCMs output were assessed over three homogenous subregions and validated using precipitation data from eighty-one (81) ground observation stations and TRMM satellite data. Furthermore, the ability of the RCMs to simulate response to El Nino and La Nina events was assessed. Results show that two of the RCMs (RCA and REMO) simulated the main features of the rainfall climatology and associated dynamics over the three subregions (Guinea Coast, Savannah, and Sahel) of West Africa. The RCMs also capture the African Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ) with little variations in position and intensity. Analysis shows significant biases in individual models de...
There are currently significant disagreements in the strength of the water vapour continuum in the near-infrared region. To understand the effects of these disagreements on the absorption of solar radiation, line-by-line radiative... more
There are currently significant disagreements in the strength of the water vapour continuum in the near-infrared region. To understand the effects of these disagreements on the absorption of solar radiation, line-by-line radiative transfer calculations were performed from 2000 to 10,000 cm−1 (1–5 μm) for three standard atmospheres; tropical, mid-latitude summer and sub-arctic winter atmospheres. These calculations were carried out at a solar zenith angle of 60° using line parameters from HITRAN (HIgh-resolution TRANsmission). Three currently available water vapour continuum models were selected for this study; versions 2.5 and 3.2 of the semi-empirical MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies) model and the laboratory-measured CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) model. The differences between the contributions of both MT_CKD models to near-infrared absorption and heating are modest for all three atmospheres. The additiona...
This paper identifies fundamental issues which prevent the effective uptake of climate information services in Nigeria. We propose solutions which involve the extension of short-range (1 to 5 days) forecasts beyond that of medium-range (7... more
This paper identifies fundamental issues which prevent the effective uptake of climate information services in Nigeria. We propose solutions which involve the extension of short-range (1 to 5 days) forecasts beyond that of medium-range (7 to 15 days) timescales through the operational use of current forecast data as well as improve collaboration and communication with forecast users. Using newly available data to provide seamless operational forecasts from short-term to sub-seasonal timescales, we examine evidence to determine if effective demand-led sub-seasonal-to-seasonal (S2S) climate forecasts can be co-produced. This evidence involves: itemization of forecast products delivered to stakeholders, with their development methodology; enumeration of inferences of forecast products and their influences on decisions taken by stakeholders; user-focused discussions of improvements on co-produced products; and the methods of evaluating the performance of the forecast products. We find t...
The impacts of global warming on rainfall in West Africa were examined using a numerical framework for 5 monsoon years (2001, 2007, 2008, 2010, and 2011). Rainfall characteristics over the three climatic zones, Guinea coast, Savannah, and... more
The impacts of global warming on rainfall in West Africa were examined using a numerical framework for 5 monsoon years (2001, 2007, 2008, 2010, and 2011). Rainfall characteristics over the three climatic zones, Guinea coast, Savannah, and Sahel, were analyzed. The potential changes associated with global warming were assessed by the pseudo-global warming (PGW) downscaling method. Multiple PGW runs were conducted using climate perturbation from the 40-member ensemble of the Community Earth System Model version 1 (CESM1) coupled with Community Atmospheric Model version 5.2 (CAM5.2) component large ensemble project. The model output was compared with Tropical Rainfall Measuring Mission and Global Precipitation Climatology Project rainfall alongside surface temperature from the European Center for Medium-Range Weather Forecast Reanalysis. Results show that the estimated rainfall amount from the future climate in the 2070s increases slightly compared with the current climate. The total r...
Observed rainfall and temperature data for the period 1960–2007 were used to examine recent changes of extreme climate over Kano, located in the Sahelian region of Nigeria. The RClimDex software package was employed to generate nine... more
Observed rainfall and temperature data for the period 1960–2007 were used to examine recent changes of extreme climate over Kano, located in the Sahelian region of Nigeria. The RClimDex software package was employed to generate nine important climate indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). For the entire period, the results show a warming trend, an increased number of cool nights, more warm days, and a strong increase in the number of warm spells. The rainfall indices show a slight increase in annual total rainfall, a decrease in the maximum number of consecutive wet days, and a significant increase in the number of extremely wet days. Such changes in climate may result in an increasing demand for domestic energy for cooling and a higher evaporation rate from water bodies and irrigated crop. These findings may give some guidance to politicians and planners in how to best cope with these extreme weather and climate events.
Understanding the variability of rainfall is important for sustaining rain-dependent agriculture and driving the local economy of Nigeria. Paucity and inadequate rain gauge network across Nigeria has made satellite-based rainfall products... more
Understanding the variability of rainfall is important for sustaining rain-dependent agriculture and driving the local economy of Nigeria. Paucity and inadequate rain gauge network across Nigeria has made satellite-based rainfall products (SRPs), which offer a complete spatial and consistent temporal coverage, a better alternative. However, the accuracy of these products must be ascertained before use in water resource developments and planning. In this study, the performances of Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Precipitation estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), and Tropical Applications of Meteorology using SATellite data and ground-based observations (TAMSAT), were evaluated to investigate their ability to reproduce long term (1983–2013) observed rainfall characteristics derived from twenty-four (24) gauges in Nigeria. Results show that all products performed well in...
Simulations with four land surface models (LSMs) (i.e., Noah, Noah-MP, Noah-MP with ground water GW option, and CLM4) using the Weather Research and Forecasting (WRF) model at 12 km horizontal grid resolution were carried out as two sets... more
Simulations with four land surface models (LSMs) (i.e., Noah, Noah-MP, Noah-MP with ground water GW option, and CLM4) using the Weather Research and Forecasting (WRF) model at 12 km horizontal grid resolution were carried out as two sets for 3 months (December–February 2011/2012 and July–September 2012) over West Africa. The objective is to assess the performance of WRF LSMs in simulating meteorological parameters over West Africa. The model precipitation was assessed against TRMM while surface temperature was compared with the ERA-Interim reanalysis dataset. Results show that the LSMs performed differently for different variables in different land-surface conditions. Based on precipitation and temperature, Noah-MP GW is overall the best for all the variables and seasons in combination, while Noah came last. Specifically, Noah-MP GW performed best for JAS temperature and precipitation; CLM4 was the best in simulating DJF precipitation, while Noah was the best in simulating DJF tempe...
Simulations with four land surface models (LSMs) (i.e., Noah, Noah-MP, Noah-MP with ground water GW option, and CLM4) using the Weather Research and Forecasting (WRF) model at 12 km horizontal grid resolution were carried out as two sets... more
Simulations with four land surface models (LSMs) (i.e., Noah, Noah-MP, Noah-MP with ground water GW option, and CLM4) using the Weather Research and Forecasting (WRF) model at 12 km horizontal grid resolution were carried out as two sets for 3 months (December–February 2011/2012 and July–September 2012) over West Africa. The objective is to assess the performance of WRF LSMs in simulating meteorological parameters over West Africa. The model precipitation was assessed against TRMM while surface temperature was compared with the ERA-Interim reanalysis dataset. Results show that the LSMs performed differently for different variables in different land-surface conditions. Based on precipitation and temperature, Noah-MP GW is overall the best for all the variables and seasons in combination, while Noah came last. Specifically, Noah-MP GW performed best for JAS temperature and precipitation; CLM4 was the best in simulating DJF precipitation, while Noah was the best in simulating DJF tempe...