Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
<p>Schematic of Landsat 8 OLI instrument.</p> "> Figure 2
<p>Relative Spectral Response (RSR) of L8 OLI and L7 ETM+.</p> "> Figure 3
<p>Hyperion, ETM+ and OLI images over path 198, row 39 acquired during the L8 underfly on 30 March 2013. 10 ROIs each of approximately 6 km by 6 km area were chosen from geo-registered L1T products. The co-ordinates of the ROIs are provided in <a href="#remotesensing-06-12619-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>Landsat 7 ETM+ image over Libya 4. The red rectangle in the bottom images marks the chosen region of interest (ROI) with latitude (min and max): 28.45, 28.64, longitude (min and max): 23.29, 23.4.</p> "> Figure 5
<p>Spectral band adjustment Factor (SBAF) for Libya 4 test site.</p> "> Figure 6
<p>Cross calibration scenes based on path 198, row 39.</p> "> Figure 7
<p>Temporal Trend of L8 OLI over Libya 4 PICS.</p> "> Figure 8
<p>Temporal trend of L8 OLI over Libya 4 PICS.</p> "> Figure 9
<p>Summarized plot of ETM+ and OLI cross-calibration results.</p> "> Figure 10
<p>Comparison between reflectance and radiance-based cross-calibration.</p> "> Figure 11
<p>Aerosol levels over the Libya 4 test site.</p> "> Figure 12
<p>Water vapor levels over the Libya 4 site.</p> "> Figure 13
<p>Radiance levels predicted for the Libya 4 test site.</p> "> Figure 14
<p>Percent difference between L7 and L8 coincident looks—Summer.</p> "> Figure 15
<p>Percent difference between L7 and L8 coincident looks—Winter.</p> "> Figure 16
<p>Percent difference between L7 and L8 non-coincident looks—Summer.</p> ">
Abstract
:1. Introduction
2. Overview
2.1. OLI Design Summary
2.2. Relative Spectral Response (RSR)
2.3. Conversion to TOA Radiance and Reflectance for OLI
2.3.1. Conversion to TOA Radiance
- Lλ: TOA radiance ( Watts/m2 × srad × μm)
- ML: Band-specific multiplicative rescaling
- AL: Band-specific additive rescaling factor
- Qcal: Quantized and calibrated standard product pixel values (DN)
2.3.2. Conversion to TOA Reflectance
- : TOA planetary reflectance, without correction for solar angle
- Mρ: Band-specific multiplicative rescaling factor
- Aρ: Band-specific additive rescaling factor
- Qcal: Quantized and calibrated standard product pixel values (DN)
- ρλ: TOA reflectance
- θSZA: Solar Zenith angle
3. Method Overview
3.1. Test Sites
Sat/Sensor | Acquisition Date | Acquisition Time | WRS2 Path/Row | Scene center Lat/Lon | Sun Elevation (deg) | Sun Azimuth (deg) | Look Angle (deg) |
---|---|---|---|---|---|---|---|
L7 ETM+ | 30 March 2013 | 8:58:11 | 182/42 | 25.996°N/21.557°E | 57.41 | 128.49 | NADIR |
L8 OLI | 30 March 2013 | 9:02:01 | 182/42 | 26.002°N/21.936°E | 58.43 | 130.10 | NADIR |
EO-1 HYP* | 27 March 2013 | 8:30:16 | 182/42 | 25.363°N/21.349°E | 51.91 | 121.21 | −0.76 |
L7 ETM+ | 30 March 2013 | 8:58:35 | 182/43 | 24.557°N/21.206°E | 58.10 | 126.35 | NADIR |
L8 OLI | 30 March 2013 | 9:02:24 | 182/43 | 24.551°N/21.581°E | 59.15 | 127.91 | NADIR |
L7 ETM+ | 30 March 2013 | 10:35:52 | 198/39 | 30.312°N/2.058°W | 55.10 | 134.39 | NADIR |
L8 OLI | 30 March 2013 | 10:39:24 | 198/39 | 30.301°N/1.608°W | 56.03 | 136.08 | NADIR |
EO-1 HYP* | 30 March 2013 | 10:20:56 | 198/38 | 30.379°N/2.067°W | 53.04 | 130.21 | 23.94 |
3.2. Spectral Band Adjustment Factor (SBAF)
4. Results and Discussion
4.1. Results Based on Underfly Image Pairs
4.2. Results Based on Libya 4
Bands | L8 OLI | L7 ETM+ | SBAF (Hyperion Derived) | % Diff Before SBAF | % Diff after SBAF |
---|---|---|---|---|---|
Blue | 0.249 | 0.250 | 1.015 | 0.70% | 2.22% |
Green | 0.340 | 0.340 | 0.997 | −0.24% | −0.54% |
Red | 0.466 | 0.459 | 0.989 | −1.57% | −2.64% |
NIR | 0.589 | 0.546 | 1.104 | −7.43% | 2.20% |
SWIR-1 | 0.683 | 0.650 | 1.026 | −4.92% | −2.49% |
SWIR-2 | 0.612 | 0.562 | 1.063 | −8.23% | −2.45% |
4.3. Combining the Comparison Results
5. Discussion on Atmospheric Uncertainties
Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|
Summer | 0.003% | 0.116% | 0.087% | 1.177% | 0.679% | 0.280% |
Winter | 0.004% | 0.142% | 0.114% | 1.369% | 0.800% | 0.333% |
Blue | Green | Red | NIR | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|
Summer | 0.086% | 0.357% | 0.686% | 1.270% | 0.980% | 2.872% |
Winter | 0.118% | 0.440% | 0.865% | 1.493% | 1.204% | 3.513% |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Irons, J.R.; Masek, J.G. Requirements for a Landsat data continuity mission. Photogramm. Eng. Remote Sens. 2006, 72, 1102–1108. [Google Scholar]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Markham, B.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, D.L.; Barker, J.L.; Scaramuzza, P.L. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2810–2820. [Google Scholar] [CrossRef]
- Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carman, S.L. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1160–1173. [Google Scholar] [CrossRef]
- Thome, K.J. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sens. Environ. 2001, 78, 27–38. [Google Scholar] [CrossRef]
- Biggar, S.F.; Thome, K.J.; Wisniewski, W. Vicarious radometric calibration of EO-1 sensors by reference to high-reflectance ground targets. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1174–1179. [Google Scholar] [CrossRef]
- Knight, E. Landsat-8 Operational Land Imager design, characterization and perfomance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Figoski, J.W.; Zaun, N.; Mooney, T. Performance results for the Landsat OLI spectral filters. Proc. SPIE 2009. [Google Scholar] [CrossRef]
- Barsi, J.A.; Lee, K.; Markham, B.; Kvaran, G.; Pedelty, J.A. The spectral response of the Landsat-8 operational land imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Chander, G.; Xiong, X.; Angal, A.; Choi, J. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ. 2010, 114, 935–939. [Google Scholar]
- Using the USGS Landsat 8 Product. Available online: http://landsat.usgs.gov/Landsat8_Using_Product.php (accessed on 6 June 2014).
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ. 1996, 58, 101–114. [Google Scholar] [CrossRef]
- Helder, D.L.; Basnet, B.; Morstad, D.L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens. 2010, 36, 527–539. [Google Scholar] [CrossRef]
- Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Mishra, N.; Helder, D.L. Impact of Terra MODIS Collection 6 on long-term trending comparisons with Landsat 7 ETM+ reflective solar bands. Remote Sens. Lett. 2013, 4, 873–881. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, X.; Wu, A.; Wu, X. Assessing the consistency of AVHRR and MODIS L1B reflectance for generating Fundamental Climate Data Records. J. Geophys. Res. Atmos. 2008. [Google Scholar] [CrossRef]
- Smith, D.L.; Mutlow, C.T.; Rao, C.R.N. Calibration monitoring of the visible and near-infrared channels of the Along-Track Scanning Radiometer-2 by use of stable terrestrial sites. Appl. Opt. 2002, 41, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Amit, A.; Choi, T.; Doelling, D.R. Applications of Spectral Band Adjustment Factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Lacherade, S.; Fougnie, B.; Henry, P.; Gamet, P. Cross calibration over desert sites: Description, methodology, and operational implementation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1098–1113. [Google Scholar] [CrossRef]
- Govaerts, Y.M.; Stercxs, S.; Adriaensen, S. Optical sensor calibration using simulated radiances over desert sites. In Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 6932–6035. [CrossRef]
- Mishra, N.; Helder, D.L.; Angal, A.; Choi, T.; Xiong, X. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site. Remote Sens. 2014, 6, 1327–1346. [Google Scholar] [CrossRef]
- Helder, D.L.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.; Angal, A.; Choi, T. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1360–1369. [Google Scholar] [CrossRef]
- Helder, D.L.; Karki, S.; Bhatt, R.; Micijevic, E.; Aaron, D.; Jasinski, B. Radiometric calibration of the Landsat MSS sensor series. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2380–2399. [Google Scholar] [CrossRef]
- Teillet, P.M.; Markham, B.L.; Irish, R.R.; Barker, J.L.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J. Overview of intercalibration of satellite instruments. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1056–1080. [Google Scholar] [CrossRef]
- Markham, B.L.; Haque, M.O.; Barsi, J.A.; Micijevic, E.; Helder, D.L.; Thome, K.J.; Aaron, D.; Czapla-Myers, J.S. Landsat 7 ETM+: 12 years on-orbit reflective-band radiometric performance. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2056–2062. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Wu, A.; Xiong, X.; Scarino, B.R.; Haney, C.O.; Gopalan, A. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets. Remote Sens. 2014, 6, 2809–2826. [Google Scholar] [CrossRef]
- Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Henry, P.; Chander, G.; Fougnie, B.; Thomas, C.; Xiong, X. Assessment of spectral band impact on intercalibration over desert sites using simulation based on Eo-1 Hyperion data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1297–1308. [Google Scholar] [CrossRef]
- Chander, G.; Helder, D.L.; Aaron, D.B.; Mishra, N.; Shrestha, A.K. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1282–1296. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619-12638. https://doi.org/10.3390/rs61212619
Mishra N, Haque MO, Leigh L, Aaron D, Helder D, Markham B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sensing. 2014; 6(12):12619-12638. https://doi.org/10.3390/rs61212619
Chicago/Turabian StyleMishra, Nischal, Md Obaidul Haque, Larry Leigh, David Aaron, Dennis Helder, and Brian Markham. 2014. "Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)" Remote Sensing 6, no. 12: 12619-12638. https://doi.org/10.3390/rs61212619
APA StyleMishra, N., Haque, M. O., Leigh, L., Aaron, D., Helder, D., & Markham, B. (2014). Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sensing, 6(12), 12619-12638. https://doi.org/10.3390/rs61212619