LIPIcs.APPROX-RANDOM.2024.57.pdf
- Filesize: 0.67 MB
- 13 pages
We introduce a novel concept termed "stochastic distance" for property testing. Diverging from the traditional definition of distance, where a distance t implies that there exist t edges that can be added to ensure a graph possesses a certain property (such as k-edge-connectivity), our new notion implies that there is a high probability that adding t random edges will endow the graph with the desired property. While formulating testers based on this new distance proves challenging in a sequential environment, it is much easier in a distributed setting. Taking k-edge-connectivity as a case study, we design ultra-fast testing algorithms in the CONGEST model. Our introduction of stochastic distance offers a more natural fit for the distributed setting, providing a promising avenue for future research in emerging models of computation.
Feedback for Dagstuhl Publishing