Coevolution of Economic and Industrial Linkages within the Land-Sea Industrial Structure of China
<p>Industrial added values of continental three sectors in the Northern Marine Economic Circle of China (2006–2019).</p> "> Figure 2
<p>Industrial added values of continental three sectors in the Eastern Marine Economic Circle of China (2006–2019).</p> "> Figure 3
<p>Industrial added values of continental three sectors in the Southern Marine Economic Circle of China (2006–2019).</p> "> Figure 4
<p>Industrial added values of three marine sectors in the Northern Marine Economic Circle of China (2006–2019).</p> "> Figure 5
<p>Industrial added values of three marine sectors in the Eastern Marine Economic Circle of China (2006–2019).</p> "> Figure 6
<p>Industrial added values of three marine sectors in the Southern Marine Economic Circle of China (2006–2019).</p> "> Figure 7
<p>Relative advantages of three land-sea industries in the Northern Marine Economic Circle (2006–2019).</p> "> Figure 8
<p>Relative advantages of three land-sea industries in the Eastern Marine Economic Circle (2006–2019).</p> "> Figure 9
<p>Relative advantages of three land-sea industries in the Southern Marine Economic Circle (2006–2019).</p> "> Figure 10
<p>Degree of deviation among the industrial structures of three coastal economic circles (2006–2019).</p> "> Figure 11
<p>Coefficients of coevolution among the industrial structures in the three coastal economic zones (2006–2019).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gray Relational Model
2.2. Coevolution Model
2.2.1. Degree of Relative Advantage
2.2.2. Degree of Deviation
2.2.3. Coefficient of Coevolution
2.3. Data Sources and Processing
3. Structural Feature Analysis
3.1. Continental Economic Industrial Structure
3.2. Marine Economic Industrial Structure
3.3. Analysis of Linkage Development
4. Results
4.1. Internal and External Linkage Analysis
4.1.1. Calculating Simultaneous Correlations
4.1.2. Calculating Gray Time Differences
4.1.3. Model Results
4.2. Analyses of Coevolution
4.2.1. Measuring the Degree of Relative Advantage
4.2.2. Measuring the Degree of Deviation
4.2.3. Measuring the Coefficient of Coevolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J. Economics of Marine Resources; Science Press: Beijing, China, 2010. [Google Scholar]
- Lu, Z.N.; Chen, H.; Hao, Y.; Wang, J.; Song, X.; Mok, T.M. The dynamic relationship between environmental pollution, economic development and public health: Evidence from China. J. Clean. Prod. 2017, 166, 134–147. [Google Scholar] [CrossRef]
- Gilliland, P.M.; Laffoley, D. Key elements and steps in the process of developing ecosystem-based marine spatial planning. Mar. Policy 2008, 32, 787–796. [Google Scholar] [CrossRef]
- Ou, X.Y.; Ye, P.H.; Failler, P.; March, A. Planning the R&D of Marine Renewable Energy Resources: Avoiding Bottlenecks and Ensuring Sustainable Development in Developing Marine Economies. Front. Environ. Sci. 2021, 9, 11–111. [Google Scholar]
- Wang, H. Bulletin of Marine Economic Statistics of China 2020; Bulletin of the State Oceanic Administration: Beijing, China, 2021. [Google Scholar]
- Jin, X.; Yin, K.; Li, X. Grey relational analysis on the land-sea economy in China. Grey Syst. Theory Appl. 2017, 7, 31–44. [Google Scholar] [CrossRef]
- Kullenberg, G. Contributions of marine and coastal area research and observations towards sustainable development of large coastal cities. Ocean Coast. Manag. 2001, 44, 283–291. [Google Scholar] [CrossRef]
- Samonte, G.P.B.; White, A.T.; Tercero, M.A.; Diviva, J.; Tabara, E.; Caballes, C. Economic valuation of coastal and marine resources: Bohol Marine Triangle, Philippines. Coast. Manag. 2007, 35, 319–338. [Google Scholar] [CrossRef]
- Cicin-Sain, B.; Knecht, R.W. Integrated Coastal and Ocean Management: Concepts and Practices; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Auad, G.; Blythe, J.; Coffman, K.; Fath, B.D. A dynamic management framework for socio-ecological system stewardship: A case study for the United States Bureau of Ocean Energy Management. J. Coast. Conserv. 2018, 225, 32–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansong, J.; Gissi, E.; Calado, H. An approach to ecosystem-based management in maritime spatial planning process. Ocean Coast. Manag. 2017, 141, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Dyck, A.; Sumaila, U.R. Economic impact of ocean fish populations in the global fishery. J. Bioeconomics 2010, 12, 227–243. [Google Scholar] [CrossRef]
- Manea, E.; Bianchelli, S.; Fanelli, E.; Danovaro, R.; Gissi, E. Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci. Total Environ. 2020, 715, 1–15. [Google Scholar] [CrossRef]
- Schaefer, N.; Barale, V. Maritime spatial planning: Opportunities & challenges in the framework of the EU integrated maritime policy. J. Coast. Conserv. 2011, 15, 237–245. [Google Scholar]
- Han, Z.; Di, Q.; Zhou, L. The connotation and target analysis of land and sea overall planning. Marine. Econ. 2012, 2, 10–15. [Google Scholar]
- Zhang, H.; Sun, P.; Yu, S. Study on the path of industry chain integration under the overall development of land and sea. Mar. Econ. 2019, 9, 3–10. [Google Scholar]
- Sun, K.; Chai, R.; Chen, J. Sustainable development path of marine economy based on co-evolutionary Simulation. China’s Popul. Resour. Environ 2014, 24, 395–398. [Google Scholar]
- Xu, X.; Liang, Z.; Zhou, X. Discussion on sustainable development of land and sea in Yellow River Delta. Resour. Sci. 2020, 42, 424–432. [Google Scholar]
- Maragno, D.; Dall’Omo, C.F.; Pozzer, G.; Bassan, N.; Musco, F. Land-Sea interaction: Integrating climate adaptation planning and maritime spatial planning in the North Adriatic Basin. Sustainability 2020, 12, 5319. [Google Scholar] [CrossRef]
- Morrissey, K.; O’Donoghue, C.; Hynes, S. Quantifying the value of multi-sectoral marine commercial activity in Ireland. Mar. Policy 2011, 35, 721–727. [Google Scholar] [CrossRef]
- Morrissey, K.; O’Donoghue, C. The role of the marine sector in the Irish national economy: An input-output analysis. Mar. Policy 2013, 37, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Kwaka, S.J.; Yoob, S.H.; Chang, J.I. The role of the maritime industry in the Korean national economy: An input-output analysis. Mar. Policy 2005, 29, 371–383. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N. The role of the marine industry in China’s national economy: An input-output analysis. Mar. Policy 2019, 99, 42–49. [Google Scholar] [CrossRef]
- Kildow, J.T.; McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 2010, 34, 367–374. [Google Scholar] [CrossRef]
- O’Hagan, A.M.; Paterson, S.; Tissier, M.L. Addressing the tangled web of governance mechanisms for land-sea interactions: Assessing implementation challenges across scales. Mar. Policy 2020, 112, 1–12. [Google Scholar] [CrossRef]
- Van Putten, I.; Cvitanovic, C.; Fulton, E.A. A changing marine sector in Australian coastal communities: An analysis of inter and intra sectoral industry connections and employment. Ocean. Coast. Manag. 2016, 131, 1–16. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Z.; Wang, F. Study on the calculation of land-sea economic correlation effect in China. China Fish. Econ. 2009, 27, 110–114. [Google Scholar]
- Jin, X.; Yin, K.; Zhang, D. An empirical analysis of the economic relationship between land and sea in China. Stat. Decis.-Mak. 2016, 7, 131–134. [Google Scholar]
- Jin, X.; Shi, X.; Gao, J.; Xu, T.; Yin, K. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups. Int. J. Environ. Res. Public Health 2018, 15, 604. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Liang, J. Co-evolution model of industrial clusters and case analysis: A case study of Zhongshan Xiaolan hardware cluster. Chin. Soft Sci. 2009, 2, 142–150. [Google Scholar]
- Sun, J.; Zhao, Y. Marine and land co-ordination mechanism in the development of China’s marine economy. Guangdong Soc. Sci. 2011, 5, 41–47. [Google Scholar]
- Jin, X.; Sumaila, U.R.; Yin, K. Direct and Indirect Loss Evaluation of Storm Surge Disaster Based on Static and Dynamic Input-Output Models. Sustainability 2020, 12, 7347. [Google Scholar] [CrossRef]
- Ma, R.; Hou, B.; Zhang, W. Could marine industry promote the coordinated development of coastal provinces in China? Sustainability. 2019, 11, 1053. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Teng, X. A study on the synergy effect and development trend of Tianjin Marine and Land Industry System: A case study of strategic emerging industries. Sci. Technol. Prog. Countermeas. 2013, 30, 39–44. [Google Scholar]
- Yuan, Q.; Shen, T.; Feng, D. A study on the coordinated development of sea and land strategic emerging industries in China’s coastal areas. Res. Sci. Technol. Manag. 2015, 35, 99–104. [Google Scholar]
- Wang, Y.; Li, Y.; Jie, X.; Li, Y.; Li, G.; Wang, W. Spatio-temporal evolution of the coupling coordination of marine science and technology-economy-environment system in China. China’s Popul. Resour. Environ. 2020, 8, 168–176. [Google Scholar]
- Dong, Y. Evaluation of marine economy’s driving effect on China’s coastal economic development. Macroecon. Res. 2016, 11, 161–166. [Google Scholar]
- Gai, M.; Liu, W.; Tian, C. Spatio-temporal coupling analysis of land-sea industrial system in China coastal area. Resour. Sci. 2013, 35, 966–976. [Google Scholar]
- Jiao, X.; Yu, Z.; Gao, X.; Zhang, N. On the evolution of metropolitan industrial structure from the perspective of spatial differentiation: A case study of Beijing. Econ. Geogr. 2016, 36, 55–63. [Google Scholar]
- Yang, Y.; Sun, C. Bohai Economic Rim evaluation and analysis of spatial and temporal differences. Resour. Sci. 2014, 36, 691–701. [Google Scholar]
- Yu, L.; Meng, D. Spatio-temporal differentiation of economic integration of land and sea in China. Econ. Latit. 2017, 34, 7–12. [Google Scholar]
- Wei, X.; Hu, Q.; Shen, W.; Ma, J. Influence of the Evolution of Marine Industry Structure on the Green Total Factor Productivity of Marine Economy. Water 2021, 13, 1108. [Google Scholar] [CrossRef]
- Wei, Z.X.; Shi, X.G. Analysis on the Coupling Relationship between Ecological Sustainability and High-quality Economic Development Based on Panel Data of Provinces. East China Econ. Manage 2021, 35, 1–19. [Google Scholar]
- Yin, K.; Xu, Y.; Li, X.; Jin, X. Sectoral relationship analysis on China’s land-sea economy based on a novel grey periodic relational model. J. Clean. Prod. 2018, 197, 815–826. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, Z.; Chen, B. A study on early-warning indicators of housing market—An empirical study based on grey correlation time difference analysis. China Real Estate 2011, 4, 30–37. [Google Scholar]
- Gao, Y.; Zhang, W.; Yang, Q. A study on the influencing factors of the upgrading of China’s industrial structure. Econ. Geogr. 2015, 6, 96–101. [Google Scholar]
- Huang, R.; Miao, G.; Cao, X. Analysis and optimization of marine industrial structure in coastal provinces and cities of China. Ocean. Dev. Manag. 2008, 3, 54–57. [Google Scholar]
Year | Primary Sector | Secondary Sector | Service Sector | ||||||
---|---|---|---|---|---|---|---|---|---|
North | East | South | North | East | South | North | East | South | |
2006 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2007 | 117.57 | 117.56 | 125.05 | 117.05 | 116.56 | 112.32 | 121.91 | 119.90 | 118.50 |
2008 | 117.94 | 132.55 | 108.76 | 120.25 | 112.75 | 142.59 | 115.25 | 113.21 | 112.91 |
2009 | 116.74 | 127.79 | 107.80 | 100.54 | 109.65 | 113.33 | 107.64 | 104.64 | 118.27 |
2010 | 104.28 | 110.06 | 111.31 | 128.33 | 124.38 | 126.04 | 122.07 | 122.27 | 117.90 |
2011 | 128.70 | 108.12 | 114.00 | 117.87 | 113.32 | 111.53 | 116.30 | 114.67 | 114.25 |
2012 | 112.25 | 121.34 | 106.61 | 106.64 | 105.40 | 113.14 | 113.18 | 110.16 | 111.50 |
2013 | 110.85 | 102.24 | 111.83 | 108.35 | 102.04 | 107.16 | 112.10 | 108.76 | 111.64 |
2014 | 100.08 | 123.12 | 104.96 | 106.64 | 102.41 | 111.60 | 122.37 | 105.44 | 122.59 |
2015 | 98.74 | 117.08 | 110.07 | 99.18 | 106.89 | 106.83 | 103.20 | 109.27 | 111.93 |
2016 | 105.54 | 107.15 | 113.95 | 90.06 | 106.29 | 105.93 | 98.50 | 109.48 | 111.48 |
2017 | 103.26 | 113.40 | 106.08 | 119.04 | 110.95 | 112.57 | 113.68 | 112.69 | 112.06 |
2018 | 103.20 | 108.62 | 106.40 | 105.97 | 104.78 | 106.08 | 107.64 | 106.94 | 108.09 |
2019 | 102.73 | 108.49 | 106.82 | 105.29 | 106.66 | 108.86 | 106.91 | 108.88 | 110.45 |
Year | Primary Sector | Secondary Sector | Service Sector | ||||||
---|---|---|---|---|---|---|---|---|---|
North | East | South | North | East | South | North | East | South | |
2006 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2007 | 119.92 | 112.89 | 113.10 | 117.95 | 117.29 | 121.46 | 118.24 | 123.28 | 122.47 |
2008 | 116.08 | 112.20 | 117.98 | 123.08 | 115.02 | 113.66 | 119.75 | 119.31 | 116.91 |
2009 | 106.97 | 104.74 | 101.01 | 108.21 | 104.68 | 106.13 | 115.85 | 115.67 | 110.84 |
2010 | 114.79 | 113.90 | 115.21 | 115.83 | 117.79 | 120.97 | 119.55 | 119.76 | 114.80 |
2011 | 111.16 | 120.25 | 119.80 | 118.13 | 115.06 | 118.85 | 121.41 | 119.00 | 117.61 |
2012 | 109.01 | 107.86 | 107.63 | 108.23 | 105.22 | 106.15 | 114.70 | 111.56 | 111.27 |
2013 | 104.96 | 102.77 | 103.99 | 106.07 | 105.74 | 106.34 | 115.26 | 115.77 | 115.85 |
2014 | 104.19 | 100.85 | 106.94 | 103.35 | 106.22 | 108.42 | 107.31 | 111.35 | 105.90 |
2015 | 102.61 | 107.10 | 105.70 | 98.03 | 102.66 | 104.10 | 110.31 | 111.30 | 111.18 |
2016 | 98.22 | 103.76 | 110.34 | 97.15 | 107.49 | 107.57 | 106.81 | 113.80 | 113.73 |
2017 | 92.78 | 98.99 | 98.62 | 104.47 | 109.34 | 105.87 | 109.54 | 111.54 | 114.95 |
2018 | 104.50 | 102.18 | 105.74 | 82.81 | 110.80 | 110.00 | 97.57 | 112.22 | 115.75 |
2019 | 104.89 | 104.42 | 111.67 | 103.86 | 104.29 | 106.34 | 109.21 | 109.01 | 109.34 |
γ11 | γ21 | γ31 | γ12 | γ22 | γ32 | γ13 | γ23 | γ33 |
---|---|---|---|---|---|---|---|---|
0.7426 | 0.7288 | 0.6942 | 0.6277 | 0.7672 | 0.7254 | 0.6779 | 0.7825 | 0.6764 |
γ11 | γ21 | γ31 | γ12 | γ22 | γ32 | γ13 | γ23 | γ33 |
---|---|---|---|---|---|---|---|---|
0.6679 | 0.6539 | 0.6800 | 0.6179 | 0.6059 | 0.6654 | 0.7213 | 0.6579 | 0.6757 |
γ11 | γ21 | γ31 | γ12 | γ22 | γ32 | γ13 | γ23 | γ33 |
---|---|---|---|---|---|---|---|---|
0.6146 | 0.6663 | 0.6262 | 0.7043 | 0.6885 | 0.6310 | 0.7407 | 0.6687 | 0.6066 |
k = −3 | k = −2 | k = −1 | k = 0 | k = 1 | k = 2 | k = 3 | |
β11 | 0.6422 | 0.5988 | 0.6023 | 0.7426 | 0.6280 | 0.5543 | 0.6154 |
β23 | 0.6418 | 0.6024 | 0.5844 | 0.7825 | 0.5675 | 0.5699 | 0.7681 |
β32 | 0.6101 | 0.6820 | 0.7780 | 0.7254 | 0.7099 | 0.6805 | 0.5968 |
k = −3 | k = −2 | k = −1 | k = 0 | k = 1 | k = 2 | k = 3 | |
β13 | 0.6325 | 0.5500 | 0.6221 | 0.7213 | 0.5787 | 0.5967 | 0.5521 |
β23 | 0.5976 | 0.6362 | 0.6536 | 0.6579 | 0.6203 | 0.6223 | 0.6264 |
β31 | 0.5862 | 0.5663 | 0.6262 | 0.6800 | 0.7499 | 0.6687 | 0.6104 |
k = −3 | k = −2 | k = −1 | k = 0 | k = 1 | k = 2 | k = 3 | |
β13 | 0.5751 | 0.6049 | 0.6542 | 0.7407 | 0.6610 | 0.7379 | 0.6782 |
β22 | 0.7356 | 0.7542 | 0.7452 | 0.6885 | 0.7257 | 0.6583 | 0.6489 |
β32 | 0.6489 | 0.6198 | 0.7675 | 0.6310 | 0.6606 | 0.7070 | 0.5977 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Zhou, S.; Sumaila, U.R.; Yin, K.; Lv, X. Coevolution of Economic and Industrial Linkages within the Land-Sea Industrial Structure of China. Water 2021, 13, 3452. https://doi.org/10.3390/w13233452
Jin X, Zhou S, Sumaila UR, Yin K, Lv X. Coevolution of Economic and Industrial Linkages within the Land-Sea Industrial Structure of China. Water. 2021; 13(23):3452. https://doi.org/10.3390/w13233452
Chicago/Turabian StyleJin, Xue, Shiwei Zhou, Ussif Rashid Sumaila, Kedong Yin, and Xinman Lv. 2021. "Coevolution of Economic and Industrial Linkages within the Land-Sea Industrial Structure of China" Water 13, no. 23: 3452. https://doi.org/10.3390/w13233452
APA StyleJin, X., Zhou, S., Sumaila, U. R., Yin, K., & Lv, X. (2021). Coevolution of Economic and Industrial Linkages within the Land-Sea Industrial Structure of China. Water, 13(23), 3452. https://doi.org/10.3390/w13233452