An Enhanced Intrinsic Time-Scale Decomposition Method Based on Adaptive Lévy Noise and Its Application in Bearing Fault Diagnosis
<p>CEITDAN flowchart.</p> "> Figure 2
<p>GBO-COA flowchart.</p> "> Figure 3
<p>Fault diagnosis flowchart.</p> "> Figure 4
<p>Analog signal time domain.</p> "> Figure 5
<p>Comparison results of three decomposition methods: (<b>a</b>) CEEMDAN, (<b>b</b>) CEITDAN and (<b>c</b>) CEITDALN.</p> "> Figure 6
<p>Determination of the center frequency of the kurtosis spectrum.</p> "> Figure 7
<p>Energy ratio of the center frequency band.</p> "> Figure 8
<p>CEEMDAN envelope spectrum.</p> "> Figure 9
<p>CEITDAN envelope spectrum.</p> "> Figure 10
<p>CEITDALN envelope spectrum.</p> "> Figure 11
<p>Fitness value of the improved optimization algorithm and the number of iterations.</p> "> Figure 12
<p>Experimental rig for real measurements.</p> "> Figure 13
<p>Comparison results of three decomposition methods: (<b>a</b>) CEEMDAN, (<b>b</b>) CEITDAN, and (<b>c</b>) CEITDALN.</p> "> Figure 14
<p>Determination of the center frequency of the kurtosis spectrum.</p> "> Figure 15
<p>Energy ratio of the center frequency band.</p> "> Figure 16
<p>CEEMDAN envelope spectrum.</p> "> Figure 17
<p>CEITDAN envelope spectrum.</p> "> Figure 18
<p>CETIDALN envelope spectrum.</p> "> Figure 19
<p>Fitness value of the improved optimization algorithm and the number of iterations.</p> "> Figure 20
<p>Comparison results of three decomposition methods: (<b>a</b>) CEEMDAN, (<b>b</b>) CEITDAN, and (<b>c</b>) CEITDALN.</p> "> Figure 21
<p>Time domain diagram after wavelet threshold noise reduction.</p> "> Figure 22
<p>Energy ratio of the center frequency band.</p> "> Figure 23
<p>CEEMDAN envelope spectrum.</p> "> Figure 24
<p>CEITDAN envelope spectrum.</p> "> Figure 25
<p>Wavelet threshold noise reduction envelope spectrum.</p> "> Figure 26
<p>CETIDALN envelope spectrum.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. CEITDAN
2.2. Group Optimization Algorithm Theory
3. Proposed Method
3.1. Improved CEITDAN Based on Lévy Noise
- (1)
- Using ITD to decompose each , followed by averaging the first residual component, the first residual component, , is:
- (2)
- By eliminating from the most primitive signal, the first PR signal is obtained as:
- (3)
- Construct the set residual signal and decompose it to obtain as:
- (4)
- When , analogous to the above calculation, find and then find :
- (5)
- The algorithm terminates when the -pole is less than 3. The final decomposition results in:
3.2. Improved COA Based on GBO Optimization
Algorithm 1. Generation of solution |
If If Else END END |
3.3. Proposed Method
4. Results
4.1. Case A: Numerical Simulation Analysis
4.2. Case B: Experiment Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laha, S.K. Enhancement of fault diagnosis of rolling element bearing using maximum kurtosis fast nonlocal means denoising. Measurement 2017, 100, 157–163. [Google Scholar] [CrossRef]
- Zheng, J.J.; Yuan, Y.; Zou, L.; Deng, W.; Guo, C.; Zhao, H.M. Study on a novel fault diagnosis method based on VMD and BLM. Symmetry 2019, 11, 747. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.M.; Wang, F.L.; Zhang, C.C.; Zhang, L.; Li, P. Evaluation of rolling bearing performance degradation using wavelet packet energy entropy and RBF neural network. Symmetry 2019, 11, 1064. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Lv, Y.; Song, G. Multi-fault diagnosis of rolling bearings via adaptive projection intrinsically transformed multivariate empirical mode decomposition and high order singular value decomposition. Sensors 2018, 18, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, R.; Gupta, V.K.; Kankar, P.K. Bearing fault diagnosis based on multi-scale permutation entropy and adaptive neuro fuzzy classifier. J. Vib. Control 2013, 21, 461–467. [Google Scholar] [CrossRef]
- Ge, M.; Wang, J.; Ren, X. Fault Diagnosis of Rolling Bearings Based on EWT and KDEC. Entropy 2017, 19, 633. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Wang, J.; Xu, Y.C. Rolling bearing fault diagnosis based on EWT Sub-modal Hypothesis test and ambiguity correlation classification. Symmetry 2018, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 2011, 74, 1638–1645. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, R. Enhancing Weak Defect Features Using Undecimated and Adaptive Wavelet Transform for Estimation of Roller Defect Size in a Bearing. Tribol. Trans. 2017, 5, 60. [Google Scholar] [CrossRef]
- Yang, P.; Yang, Q. Empirical Mode Decomposition and Rough Set Attribute Reduction for Ultrasonic Flaw Signal Classification. Int. J. Comput. Intell. Syst. 2014, 7, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liang, X.; Yang, Y.; Xu, M.; Huang, W. Early Fault Diagnosis of Rotating Machinery by Combining Differential Rational Spline-Based LMD and K-L Divergence. IEEE Trans. Instrum. Meas. 2017, 66, 3077–3090. [Google Scholar] [CrossRef]
- Frei, M.G.; Osorio, I. Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals. Proc. R. Soc. A 2007, 463, 321–342. [Google Scholar] [CrossRef]
- Bo, L.; Peng, C. Fault diagnosis of rolling bearing using more robust spectral kurtosis and intrinsic time-scale decomposition. J. Vib. Control 2014, 22, 2921–2937. [Google Scholar] [CrossRef]
- Duan, L.; Yao, M.; Wang, J.; Bai, T.; Yue, J. Integrative intrinsic time-scale decomposition and hierarchical temporal memory approach to gearbox diagnosis under variable operating conditions. Adv. Mech. Eng. 2016, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Qu, J.; Chai, Y.; Tang, Q.; Zhou, Y. Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine. J. Mech. Sci. Technol. 2017, 31, 545–553. [Google Scholar] [CrossRef]
- Zhang, J.H.; Liu, Y. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines. Front. Inf. Technol. Electron. Eng. 2017, 18, 272–286. [Google Scholar] [CrossRef]
- Hu, A.; Xiang, L.; Gao, N. Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy. J. Vibroeng. 2017, 19, 1759–1770. [Google Scholar] [CrossRef]
- Tong, Q.; Cao, J.; Han, B.; Wang, D.; Lin, Y.; Zhang, W.; Wang, J. A fault diagnosis approach for rolling element bearings based on dual-tree complex wavelet packet transform-improved intrinsic time-scale decomposition. Singular value decomposition, and online sequential extreme learning machine. Adv. Mech. Eng. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Qin, K.; Xu, Y. Diesel engine fault diagnosis using intrinsic time-scale decomposition and multistage Adaboost relevance vector machine. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 881–894. [Google Scholar] [CrossRef]
- Bi, F.; Ma, T.; Liu, C.; Tian, C. Knock detection in spark ignition engines based on complementary ensemble improved intrinsic time-scale decomposition (CEIITD) and Bi-spectrum. J. Vibroeng. 2018, 20, 936–953. [Google Scholar] [CrossRef]
- Yu, J.; Liu, H. Sparse coding shrinkage in intrinsic time-scale decomposition for weak fault feature extraction of bearings. IEEE Trans. Instrum. Meas. 2018, 67, 1579–1592. [Google Scholar] [CrossRef]
- Yuan, Z.; Peng, T.; An, D.; Cristea, D.; Pop, M.A. Rolling bearing fault diagnosis based on adaptive smooth ITD and MF-DFA method. J. Low Freq. Noise Vib. Active Control 2019, 39, 968–986. [Google Scholar] [CrossRef] [Green Version]
- Lei, Z.; Zhou, Y.; Sun, B.; Sun, W. An intrinsic timescale decomposition-based kernel extreme learning machine method to detect tool wear conditions in the milling process. Int. J. Adv. Manufac. Technol. 2019, 106, 1203–1212. [Google Scholar] [CrossRef]
- Ma, J.; Zhan, L.; Li, C.; Li, Z. An improved intrinsic time scale decomposition method based on adaptive noise and its application in bearing fault feature extraction. Meas. Sci. Technol. 2020, 32, 025103. [Google Scholar] [CrossRef]
- Ciabattoni, L.; Ferracuti, F.; Freddi, A.; Monteriu, A. Statistical spectral analysis for fault diagnosis of rotating machines. IEEE Trans. Ind. Electr. 2017, 65, 4301–4310. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Yang, H. Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci. 2016, 59, 371–375. [Google Scholar] [CrossRef]
- Pierezan, J.; Coelho, L.S. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 2633–2640. [Google Scholar]
- Zhang, G.; Hu, D.; Zhang, T. The analysis of stochastic resonance and bearing fault detection based on linear coupled bistable system under levy noise. Chin. J. Phys. 2018, 56, 2718–2730. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. Nonlinear Programming: Theory and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Weerakoon, S.; Fernando, T.G. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Patil, P.; Verma, U. Numerical Computational Methods; Alpha Science International Ltd.: Oxford, UK, 2006. [Google Scholar]
- Yi, J.H.; Wang, J.; Wang, G.G. Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem. Adv. Mech. Eng. 2016, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Antoni, J. The spectral kurtosis: A useful tool for characterizing non-stationary signals. Mech. Syst. Signal Process. 2006, 20, 282–307. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y. Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis. Mech. Syst. Signal Process. 2020, 138, 106545. [Google Scholar] [CrossRef]
- Huang, D.R. A sufficient condition of monotone cubic splines. Math. Number Sin. 1982, 2, 214–217. [Google Scholar]
- Chen, Q.; Huang, N.; Riemenschneider, S.; Xu, Y. A B-spline approach for empirical mode decompositions. Adv. Comput. Math. 2006, 24, 171–195. [Google Scholar] [CrossRef]
- Zhan, L.W.; Ma, F.; Zhang, J.J.; Li, C.W.; Li, Z.H.; Wang, T.J. Fault feature extraction and diagnosis of rolling bearings based on enhanced complementary empirical mode decomposition with adaptive noise and statistical time-domain features. Sensors 2019, 19, 4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
− | ECI | OI | RMSE | ISNR | Output SNR |
---|---|---|---|---|---|
CEITDAN | 0.5915 | 0.2876 | 0.2870 | −31.4192 | 1.7978 |
CEEMDAN | 0.5512 | 0.7666 | 0.3223 | −31.26 | 1.7135 |
CEITDALN | 0.8155 | 0.0491 | 0.2539 | −28.4227 | 6.2229 |
Ball Number | Pitch Diameter | Roller Diameter | Contact Angle |
---|---|---|---|
14 | 46 | 7.5 | 0 |
− | ECI | OI | RMSE | ISNR |
---|---|---|---|---|
CEITDAN | 0.6563 | 0.4754 | 0.3164 | −27.1110 |
CEEMDAN | 0.5964 | 0.8453 | 0.3584 | −27.0868 |
CEITDALN | 0.8345 | 0.0698 | 0.2783 | −25.3680 |
− | ECI | OI | RMSE | ISNR |
---|---|---|---|---|
CEITDAN | 0.6912 | 0.3716 | 0.3056 | −29.7182 |
CEEMDAN | 0.6132 | 0.7985 | 0.3379 | −29.0913 |
Wavelet Threshold Method | − | − | 0.3089 | −29.9812 |
CEITDALN | 0.8487 | 0.0591 | 0.2694 | −27.3680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhuo, S.; Li, C.; Zhan, L.; Zhang, G. An Enhanced Intrinsic Time-Scale Decomposition Method Based on Adaptive Lévy Noise and Its Application in Bearing Fault Diagnosis. Symmetry 2021, 13, 617. https://doi.org/10.3390/sym13040617
Ma J, Zhuo S, Li C, Zhan L, Zhang G. An Enhanced Intrinsic Time-Scale Decomposition Method Based on Adaptive Lévy Noise and Its Application in Bearing Fault Diagnosis. Symmetry. 2021; 13(4):617. https://doi.org/10.3390/sym13040617
Chicago/Turabian StyleMa, Jianpeng, Shi Zhuo, Chengwei Li, Liwei Zhan, and Guangzhu Zhang. 2021. "An Enhanced Intrinsic Time-Scale Decomposition Method Based on Adaptive Lévy Noise and Its Application in Bearing Fault Diagnosis" Symmetry 13, no. 4: 617. https://doi.org/10.3390/sym13040617