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Abstract 

Feature extraction and selection are the most important techniques for ultrasonic flaw signal classification. In this 
study, empirical mode decomposition (EMD) is used to obtain the intrinsic mode functions (IMFs) of original 
signal, and their corresponding traditional time and frequency domain based statistical parameters are extracted as 
the initial features. After that, spectral clustering method is used for feature value discretization so that rough set 
attribute reduction (RSAR) can be applied to implement feature selection. The final features are taken as input of 
artificial neural networks (ANNs) to train the decision classifier for flaw identification. Experimental results show 
that compared to conventional wavelet transform based schemes and principal components analysis, EMD 
combined with RSAR can improve the performance of feature extraction and selection. ANN by using such scheme 
can effectively classify different ultrasonic flaw signals with high accuracy and low training elapsed time. 

Keywords: empirical mode decomposition; rough set attribute reduction; feature extraction and selection; ultrasonic 
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1. Introduction 

Ultrasonic inspection is one of the most successful non-
destructive testing (NDT) techniques for quality 
assessment and detection of flaws in engineering 
materials since it can analyze even highly thick metallic 
as well as nonmetallic materials with good resolution 
and remarkable operative versatility. The echo signals 
obtained by ultrasonic inspection contain the 
information of flaws, based on which we can identify 
the flaw’s position, magnitude and category. However, 
the conventional ultrasonic inspection techniques are 
based on manual or experiential pattern identification, 
which easily brings about costly, lengthy and erratic 

analysis. Therefore, a lot of modern signal processing 
methods and artificial intelligence tools have been 
applied to implement automatic ultrasonic signal 
classification [1]. In the automatic classification system, 
ultrasonic flaw signals acquired in a form of digitized 
data are first preprocessed, and then informative 
features are extracted and selected using various digital 
signal processing and pattern recognition techniques. 
Finally, a decision classifier can be trained for flaw 
identification, i.e., once the unseen ultrasonic signal 
feature is inputted into classifier, the corresponding flaw 
type will be outputted. 

In ultrasonic inspection process, the collected signals 
are presented in the format of an A-Scan, which is a plot 
of signal amplitude versus time [2]. Even though some 
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flaw information can be obtained directly from the 
amplitude of the reflected signal, this time-amplitude 
presentation is not always the best representation of the 
signal. In most cases, the signal’s frequency content is 
more important since some distinguished information is 
hidden in the frequency components. In order to find the 
frequency content of a signal, Fourier transform (FT) is 
often used for transforming the time based signal into 
frequency based one, i.e., the original signal is broken 
down into constituent sinusoids of different frequencies. 
The application of FT in ultrasonic inspection can be 
referred to [3][4][5][6]. 

For nonstationary ultrasonic signals, however, only 
the statistical parameters in time domain and frequency 
domain can be got by FT, while the local features about 
flaws can not be extracted. Therefore, wavelet transform 
(WT) based methods have been proposed to obtain more 
characteristic parameters for non-stationary signal. WT 
obtains the representation of a signal in terms of a finite 
length or fast decaying oscillating waveform, which is 
scaled and translated to match the input signal. In this 
way, it is possible to split local and global dynamics for 
a signal by a multiresolution analysis (MRA) in a 
wavelet domain, solving the shortcoming of FT. WT 
based methods have gained wider application of feature 
extraction for ultrasonic flaw signals [7][8][9][10].  

Not all features extracted from ultrasonic signals for a 
given classification problem need to be used due to their 
redundancy, therefore a further process is needed for 
redundancy reduction by retaining only small number of 
informative features. This stage of processing is called 
feature selection. Generally, two primary schemes are 
used for feature selection. One is to find a 
transformation from the original feature variables to a 
lower-dimensional feature space. The most widely used 
method for ultrasonic flaw signal classification is 
principal components analysis (PCA) [11][12][13]. 
Another is to select a subset from the original features 
by some criterions, which is described in [3][14].  

This study aims to present the optimal feature 
extraction and selection scheme for ultrasonic flaw 
signal classification. The main contributions of the 
study include: (1) Utilize empirical mode decomposition 
(EMD) to extract features for ultrasonic flaw signal. 
Unlike WT which needs pre-determined wavelet 
functions, EMD is more adaptive since it is based on 
signal information itself. (2) Apply rough set attribute 
reduction (RSAR) for further feature selection. 

Compared to PCA, RSAR can implement reduction, and 
in the meantime, preserving the original meaning of the 
features. The rest of this paper is organized as follows. 
Section 2 introduces the EMD method for feature 
extraction. Section 3 introduces the RSAR method for 
feature selection. Section 4 and 5 describe the 
experimental procedure, results and analysis. Section 6 
addresses the conclusions. 

2. Empirical Mode Decomposition for Feature 
Extraction 

2.1. The basic principle of EMD 

As mentioned in previous section, WT based methods 
have been widely used to extract features for ultrasonic 
flaw signal. The main advantage of such multiscale 
methods is to be suitable for signal analysis especially 
in highly noisy environments. For nonstationary 
ultrasonic signals, WT outperforms FT due to its ability 
to adapt the window size of the processed signal. 
Therefore, one can easily separate information and noise 
without needing a complex windowing step [15]. 
However, the main shortcoming of WT is that the time 
localization is poor for low frequency signals and the 
frequency resolution is poor for high frequency signals. 
Moreover, the analysis result depends on the choice of 
the wavelet functions. 

Empirical mode decomposition (EMD) is another 
powerful tool for adaptive multiscale analysis of 
nonstationary and nonlinear signals, which is similar 
with selective filter bank decompositions [16]. It is the 
construction of some intrinsic mode functions (IMFs) 
through a sifting process ended by an interpolation 
method and a stopping criterion. Compared to the 
original signal, IMF component is much simpler since it 
is a stationary narrow band signal charactering the 
information of original signal at different time scales. 
The small signal, easily inundated by big signal or 
background noise, can be clearly and effectively 
manifested in IMF component. IMF need satisfy two 
conditions: (1) At any instant time, the mean of upper 
envelope constituted by the local maxima and that of 
lower envelope constituted by the local minima are all 
zero. (2) In the whole data series, the number of extreme 
values (including the maxima and minima) and that of 
zero crossings are equal or differ at most by 1 [17]. 

For a given ultrasonic signal ( )x n , we have the 
following equation by using EMD. 
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1
( ) ( ) ( )

p

j p
j

x n c n r n   (1) 

where ( )jc n  (1 j p) are the IMFs and ( )pr n  is the 
residue. The process of EMD can be summarized as 
follows [18]. 
(i) Identify all extrema of ( )x n .
(ii) Interpolate between minima as well as maxima, 
ending up with some envelope min ( )e n and max ( )e n
respectively.
(iii) Compute the average min max( ) ( ( ) ( )) / 2m n e n e n .
(iv) Extract the residue ( ) ( ) ( )r n x n m n . Repeat 
previous process until ( )r n  satisfies the two conditions 
mentioned above, and record it as IMF1. 
(v) Iterate above process and obtain a group of IMFs 
and a residue. 

Note that among all IMFs, some are useful while 
some are irrelevant to flaw characteristic. We can select 
the representative IMFs for feature extraction by 
calculating the energy ( )E j  of each IMF, which is 
defined as 

2

1
( ) ( )

N

j
n

E j c n    (2) 

where N is the total data length. 

2.2. Feature extraction based on EMD 

Since it is very difficult to classify and recognize 
different flaw directly from the time domain features of 
the original ultrasonic signal, a series of IMFs of the 
original signal can be first obtained by using EMD. As 
mentioned 2.1, the IMFs contain useful information 
about flaw characteristic of original signal at different 
time scales, their corresponding traditional time and 
frequency domain based statistical parameters can be 
taken as the initial features for classification [19].  
(i)Time domain based features 

Since the IMFs are simple and stationary narrow band 
components of original signal, the statistical features 
can effective reflect some characteristics of different 
flaws. In this study, a total of 10 time domain statistical 
features are extracted from the IMFs, which are 
described in table 1. 
(ii) Frequency domain based features 

Note that the direct FT representation of original 
ultrasonic signal does not take into account any 
temporal information, therefore it can not effectively 
extract the flaw characteristic. While applying FT to 

IMFs of original signal, however, it can avoid such 
drawback by keeping both the temporal and frequency 
signal representation. In this study, 4 frequency domain 
statistical features are extracted, which are described in 
table 2. Note that '( )x t  is the FT representation of ( )x t .

Table 1. Time domain features 

Extracted feature Value 

Mean value mf
1

1 ( )
n

m
t

f x t
n

Variance vf
2

1

1 ( ( ) )
n

v m
t

f x t f
n

Root mean square rmsf 2 1/ 2

1

1( ( ))
n

rms
t

f x t
n

Peak value pf max( ( ))pf x t

Skewness skef 3 3/ 2

1

1( ( ( ) ) ) /
n

ske m v
t

f x t f f
n

Kurtosis kurf 4 2

1

1( ( ( ) ) ) /
n

kur m v
t

f x t f f
n

S factor sf /s rms mf f f
C factor cf /c p rmsf f f
I factor if /i p mf f f

Number of Zero-crossing zf

Table 2. Frequency domain features 

Extracted feature Value 

Mean value '
mf

'

1

1 '( )
n

m
t

f x t
n

Variance '
vf

' ' 2

1

1 ( '( ) )
n

v m
t

f x t f
n

Peak value '
pf ' max( '( ))pf x t

Centre frequency fref

3. Rough Set Attribute Reduction for Feature 
Selection

3.1. Feature discretization by spectral clustering 

Assume that the number of selected IMFs is m, thus a 
total of 14m features can be extracted from each 
ultrasonic flaw signal. With the extracted features, 
different flaw signals can be identified and classified 
using pattern recognition tools such as ANN. Since high 
dimensional input feature vector may take more 
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computational complexity for training ANN, feature 
selection scheme can be adopted to solve the problem. 
Feature selection aims to choose those features that are 
most predictive for a given outcome. Rough set attribute 
reduction (RSAR) is a representative method for this 
purpose. Unlike PCA method, RSAR can preserve the 
original meaning of the features after reduction. 
Furthermore, since the number of the total features in 
this study is not huge, RSAR can implement feature 
selection in a concise way with high speed. 

While applying RSAR, the initial features can be 
taken as the attributes of an information system. Since 
the data type in initial feature set is mostly continuous, 
we need first divide values of each feature into some 
classes and substitute them with several discrete values, 
which help to implement the attribute reduction with 
rough set theory. A spectral clustering algorithm is used 
for discretization since it can achieve automatic 
selection of the cluster number. Given value set of a 
feature F={v1, v2,…, vn}, the spectral clustering 
algorithm can partition the n variables into j clusters by 
following steps [20]. 
(i) Construct the corresponding similarity matrix 

( )ij n nS s  of F. If i=j then ijs =0, otherwise 
2 2exp( || ||) /(2 ) )ij i js f f .

(ii) Compute the stochastic matrix 1P D S  and 
obtain its eigensystems 1{ , }n

i i iu , where D is a diagonal 
matrix whose (i, i)-element is the sum of S’s ith row. 
(iii) Select the optimal cluster number k if we have 

1arg max(| |)k kk
.

(iv) Construct the matrix Y by stacking in columns the 
first k eigenvectors of the generalized eigensystem 
Sx= Dx.
(v) Treat each row of Y as a point in k, and partition all 
points into k clusters by using k-means algorithm. 
(vi) Assign the original feature value vi in F to cluster Cj

if and only if row i of the matrix Y is assigned to cluster 
Cj, where 1 j k.

After clustering, all feature values in F will be 
transformed to k discrete variables.  

3.2. Feature selection based on RSAR 

The whole initial feature vectors after discretization can 
be used to form an information system (U, A), where U
is a nonempty finite set of objects, called universe, A is a 
nonempty attribute set, including conditional attributes 
(each attribute stands for a feature) and decision 
attribute (each value stands for a flaw type), such that 

, : aa A a U V , where aV  is the set of values that 
attribute a may take. Let P A , IND(P) is an 
indiscernibility relation over U. For X U , X can be 
approximated using only the information contained 
within P by constructing the P-lower and P-upper 
approximations of X [21]. 

{ | [ ] }PPX x U x X   (3) 
{ | [ ] }PPX x U x X   (4) 

where [ ]Px  is the equivalence classes of IND(P).  
The tuple ( , )PX PX  is called a rough set. Let P and

Q be the attribute sets inducing equivalence relations 
over U, then the positive, negative, and boundary 
regions can be respectively defined as follows: 

/
POS ( )P

X U Q
Q PX   (5) 

/
NEG ( )P

X U Q
Q U PX   (6) 

/ /
BND ( )P

X U Q X U Q
Q PX PX  (7) 

For ,P Q A , it is said that Q depends on P in a 
degree k (0 k 1), if 

| POS ( ) |
( )

| |
P

P
Qk Q

U
  (8) 

For given P, Q and an attribute a P , the 
significance degree of a is defined as follow. 

{ }( , ) ( ) ( )P P P aQ a Q Q  (9) 
A given dataset may have many attribute reductions, 

and the collection of all reductions is defined as follow. 
all

{ }

{ | ,  ( ) ( ),  
         and ,  ( ) ( )}

X C

X a X

R X X C D D
a X D D

             (10) 

where C and D are the conditional attribute set and 
decision attribute set in A. In allR , the reduction with the 
minimal cardinality, called the minimal reduction, can 
be defined as 

min all all{ |  and ,  | | | |}R X X R Y R X Y        (11) 
In this study, the QuickReduct algorithm [22] will be 

used to obtain the minimal reduction for the initial 
features. 

4. Experimental Procedure 

We first acquired the ultrasonic A-scan signals from 
carbon fiber reinforced polymer (CFRP) specimens with 
different flaws. Then we decomposed the original 
ultrasonic signals by EMD, and extracted the 
time/frequency domain based statistical parameters of 
IMFs to construct the initial feature set. After using 
spectral clustering for feature value discretization, the 
QuickReduct algorithm was implemented on the 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

484



discrete feature set to obtain the minimal reduction, and 
all attributes in the minimal reduction were taken as the 
input of ANN classifier (hereinafter referred as 

EMD_RSAR scheme). The overall procedure is shown 
in figure 1. 

Fig.1. Overall procedure for ultrasonic flaw signal classification 

4.1. Signal acquisition 

A PXU T227 digital flaw detector was used to send 
ultrasonic waves into the CFRP specimens with 
delamination, debonding and void through a transducer 
operating at the central frequency of 5 MHz.  

An echo was reflected back each time when the 
ultrasonic wave encountered a discontinuity in the 
propagation medium. The A-scan signal was digitized at 

a sampling frequency of 100 MHz and sample length of 
512 using a Sonotek STR 8100 A/D board, and then 
stored in a personal computer (PC). The ultrasonic 
inspection system is shown in figure 2.  

The collected signals are composed by 100 signals 
with no flaw, 100 signals with delamination, 100 signals 
with debonding and 100 signals with void. The four 
kinds of representative original signals are shown in 
figure 3. 

Fig. 2. The ultrasonic inspection system 

Different flaws

Ultrasonic signal acquisition

A Series of IMFs 

Initial features

Low dimensional features
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Feature extraction 

Feature reduction 

ANN Classification Training
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Fig. 3. Four kinds of signals (a) No flaw (b) Delamination (c) Debonding (d) Void 

4.2. Feature extraction 

After signal acquisition, we obtained the IMFs of the 

different flaw signals by using EMD mentioned in 
section 2.1. The obtained IMFs are shown in figure 4 
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Fig. 4. The IMFs of four kinds of signals (a) No flaw (b) Delamination (c) Debonding (d) Void 

IMFs contain different aspects of original flaw signal, 
and some carry useful information while others may be 
relevant to noise. Eq. (2) was used to calculate the energy 

of each IMF. As is shown in figure 5, only the first five 
IMFs can be selected for further feature extraction 
because their energies are relatively high. 
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Fig. 5. IMF Energy of four kinds of signals (a) No flaw (b) Delamination (c) Debonding (d) Void 
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As mentioned in section 2.2, 14 time and frequency 
domain statistical features could be extracted from the 
each IMF. Thus, a total of 70 variables would be 
constructed the initial feature set for a given ultrasonic 
flaw signal. Table 3 lists the 14 feature values of IMF3 
of different flaw signals.  

Table 3. Features of IMF3 for different flaw signals 
(After normalization) 

Extracted
feature No flaw Delamination Debonding Void

mf 0.03 0.01 0.16 0.81

vf 0.13 0.14 0.13 0.60

rmsf 0.19 0.20 0.19 0.41

pf 0.14 0.16 0.14 0.56

skef 0.07 0.03 0.04 0.92

kurf 0.13 0.18 0.13 0.55

sf 0.18 0.77 0.04 0.01

cf 0.20 0.23 0.20 0.37

if 0.16 0.78 0.03 0.02

zf 0.08 0.08 0.58 0.25
'

mf  0.23 0.18 0.18 0.41
'

vf 0.12 0.15 0.13 0.60
'
pf 0.20 0.25 0.18 0.37

fref 0.09 0.53 0.29 0.09

4.3. Feature selection 

In this stage, the spectral clustering algorithm 
mentioned in section 3.1 was first used for feature value 
discretization. After that, we obtained 400 14-
dimensional feature vectors, which could be formed an 
information system. Then the QuickReduct algorithm 
mentioned in section 3.2 was implemented on the 
information system to find the minimal reduction. The 
minimal reduction included 47 attributes (features), i.e., 

mf , vf , pf , kurf , sf , if , zf , '
mf , '

vf , fref  of IMF1, 
mf , vf , pf , skef , sf , zf , '

vf , '
pf , fref  of IMF2, mf ,

vf , pf , skef , kurf , sf , if , zf , '
vf , fref  of IMF3, mf ,

vf , rmsf , skef , kurf , sf , zf , '
vf , fref  of IMF4, and mf ,

vf , pf , skef , sf , cf , zf , '
vf , fref  of IMF5, which 

would be taken as the final input vector of ANN. Note 
that it requires no additional parameters to operate other 
than  ( =50 in this experiment) of the spectral 

clustering algorithm in the whole process of feature 
selection.

4.4. Back propagation ANN for classification 

Feed-forward neural networks trained with the standard 
back-propagation algorithm (hereinafter referred as BP 
networks) are widely used for classifying ultrasonic 
flaw signals. BP networks are supervised networks 
requiring a desired response to be trained [23]. They 
learn to transform input data into a desired response, 
and have been shown to approximate the performance 
of optimal statistical classifiers in difficult problems. BP 
networks are valuable tools in problems when one has 
little or no knowledge about the form of the relationship 
between input feature vectors and their corresponding 
outputs. Since the features in different domains of 
ultrasonic echo signal are not directly relative to the 
flaw types, BP networks will be trained in this study for 
classification.

Generally, BP networks are characterized by the 
multilayer perceptron topology: an input layer which 
accepts the input feature vectors used in the 
classification procedure, one or more hidden layers, and 
an output layer with one neuron per class. In BP 
networks, connection weights and processing element 
biases are modified using the generalized Delta rule. 
The BP encoding process is an iterative one, and thus 
needs to be repeated until a satisfactory output is 
attained. BP recall is done simply by introducing the 
new input vector to the input layer, and computing the 
values towards the output layer of BP network [24]. The 
five cross validation procedure can be used to prevent 
the overfitting problem. We first divide the training set 
into five subsets of equal size. Sequentially one subset is 
tested using the classifier trained on the remaining four 
subsets. Thus, each instance of the whole training set is 
predicted once so the cross validation accuracy is the 
percentage of data which are correctly classified.

5. Experimental Results and Analysis 

The main purpose of the experiments is to investigate 
the effectiveness of the proposed EMD_RSAR scheme 
for ultrasonic flaw signal classification. The other three 
feature extraction and selection schemes were also 
applied for comparison, which are listed as follows. 

(i) EMD_PCA scheme 
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It first decomposed the original ultrasonic signal by 
EMD, and extracted the 14 time/frequency domain 
based statistical parameters of IMF1 to IMF5 (totally 70 
variables) to construct the initial feature set. Then the 
principal components analysis (PCA) method was 
implemented on the whole feature sets, and the principal 
components (PCs) whose contributions to total variation 
of all 70 PCs are greater than 1% were selected to 
construct the final input vectors of ANN classifier. The 
number of the selected PCs is 54 in this case. 
(ii) DWT_PCA scheme 

It first decomposed the original ultrasonic signal by 
DWT on three level using Daubechies5 wavelet. The 
obtained 512 DWT coefficients were compressed into 
256 samples by discarding the last 256 coefficients 
(cD1), which do not contain much information but 
mainly noise, and constructed the initial feature set. 
Then the PCA method was implemented on the whole 
feature sets, and the PCs whose contributions to total 
variation of all 256 PCs are greater than 1% were 
selected to construct the final input vectors of ANN 
classifier. The number of selected PCs is 97 in this case. 
(iii) Clustered_DWT scheme 

It first decomposed the original ultrasonic signal by 
DWT on three level using Daubechies5 wavelet. The 
obtained 512 DWT coefficients were compressed into 
256 samples by discarding the last 256 coefficients 
(cD1), which do not contain much information but 
mainly noise, and constructed the initial feature set. 
Then the feature sets were further mapped to cluster 
energy features and stored as clustered_DWT feature 
sets as mentioned in [1]. The number of clusters is set to 
64 in this case. 

BP networks with one hidden layer were used for 
classifying the ultrasonic signals into no flaw, 
delamination, void or debonding. To compare the four 
kinds of feature extraction and selection schemes, i.e., 
EMD_RSAR, EMD_PCA, DWT_PCA and 
Clustered_DWT, four ANN architectures respectively 
having 47, 54, 97 and 64 input nodes were designed. 
Kolmogorov’s theorem was used for determining the 
number of neurons at hidden layer. The learning rate 
was set to 0.2 and the topological order was applied as 
the update mode of the networks. The 5-fold cross-
validation was carried out for assessing classification 
performance of all ANNs. The 400 ultrasonic signals 
were shuffled and randomly divided up into 5 subsets. 
Note that the number of each kind of flaw signal is 20 in 

all subsets. In turn, 4 of these subsets were used to train 
the network, and the remaining subset was used to 
validate the network. The process did not terminate until 
every subset was taken as training set and test set. 
Moreover, we got a average of the network training 
ability by assigning 10 different initial weights to the 
network. The classification performance with different 
feature extraction and selection schemes could be 
compared using the result of each cross-validation test. 
The mean square error (MSE) limit was set to 0.001 for 
stopping the training process, and the epoch limit was 
set to 200,000 for those occasional cases where training 
failed to converge. The values of main parameters for 
training ANNs are resumed in table 4. 

Table 4. The parameters of ANNs 

Parameter Value 
No. of neurons at input layer 54/47/97/64 
No. of neurons at output layer 4
No. of neurons at hidden layer 109/95/195/129
Activation function at hidden layer tansig 
Activation function at output layer tansig 
Training algorithm trainlm
Performance goal 0.001

The average training elapsed times of ANN 
classifiers by using EMD_PCA, EMD_RSAR, 
DWT_PCA and clustered_DWT scheme were 58.8s, 
48.7s, 105.6s and 60.7s respectively, which showed the 
efficiency of EMD_RSAR scheme since it only selected 
47 features for training ANN.  

The classification accuracy in percentage of ANN 
classifiers by using different feature extraction and 
selection schemes are summarized in table 5 to 8. Note 
that only one cross-validation training classification 
result was shown here due to the limit of space. Let us 
first analysis the performance of EMD_PCA and 
EMD_RSAR for classification. As are shown in table 5 
and 6, the average recognition rate of EMD_RSAR 
(91.22%) is higher than that of EMD_PCA (89.38%). It 
validates that rough set attribute reduction can retain the 
most informative attributes (features) while reducing the 
amount of redundant attributes involved for 
classification. Since the features extracted from IMFs 
are highly relevant, it degrades the performance of PCA 
for feature selection. Moreover, to achieve higher 
computational efficiency, EMD_PCA selects only 54 
PCs as the input vector of ANN, which reduces the 
recognition rate of classification. It’s worth noting that 
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for the initial features of IMFs by implementing EMD, 
RSAR can be applied to obtain the representative 
attributes (features), while PCA method tries to obtain 
few principal components (features) without physical 
meaning through space mapping, which is unfavorable 
to intuitively interpret and analyze the formation 
mechanism of the material defect.  

Then we focus on the performance analysis of 
EMD_RSAR, DWT_PCA and clustered_DWT schemes 
for ultrasonic flaw signal classification. As are shown in 
table 6, 7 and 8, DWT_PCA scheme achieves the worst 
classification performance, whose average recognition 
rate is only 87.5%. Obviously, DWT coefficients can 
not effectively describe the flaw characteristic because 
of the time-variance problem of ultrasonic signals. 
Clustered_DWT scheme uses the unsupervised learning 
method to cluster the DWT coefficients on the basis of 
the average energies at different scales and within the 
same scale, which can achieve higher average 
recognition rate (89.06%). However, the performance of 

clustered_DWT scheme still depends on the pre-
determined wavelet basis function, and wavelet basis 
can not be changed once it is established, which can not 
guarantee the optimal decomposition. EMD_RSAR 
achieves the highest classification performance (90.94%) 
since it can decompose time-variance signal into a series 
of IMFs, which represent real physical information and 
local characteristic of flaw signal. The limited number 
of IMFs guaranties that EMD is self-adaptive and fit for 
nonlinear and nonstationary signal processing. 
Furthermore, the optimal feature selection by rough set 
attribute reduction also improves the classification 
efficiency. Additionally, the number of false positive or 
negative using EMD_RSAR for classification is the 
least. Especially for the false negative (see table 6), only 
one void signal was classified as no flaw by using 
EMD_RSAR scheme, which is greatly lower than the 
rate by using DWT_PCA or clustered_DWT. It is 
extraordinary important in some applications where 
undetected flaw are more risky compared to false alarms.  

Table 5. Classification result using EMD_PCA based features 

Number of samples assigned into this class
Class

Number of 
training 
samples 

No
flaw

Delamination Debonding Void Recognition
rate (%) 

No flaw 80 73 1 2 4 91.25 
Delamination 80 0 70 7 3 87.5 
Debonding 80 1 3 69 7 86.25 

Void 80 1 1 4 74 92.5 

Table 6. Classification result using EMD_RSAR based features 

Number of samples assigned into this class
Class

Number of 
training 
samples 

No
flaw

Delamination Debonding Void Recognition
rate (%) 

No flaw 80 75 0 2 3 93.75 
Delamination 80 0 72 6 2 90 
Debonding 80 0 3 70 7 88.63 

Void 80 1 1 4 74 92.5 

Table 7. Classification result using DWT_PCA based features 

Number of samples assigned into this class
Class

Number of 
training 
samples 

No
flaw

Delamination Debonding Void Recognition
rate (%) 

No flaw 80 73 1 2 4 91.25 
Delamination 80 1 69 6 4 86.25 
Debonding 80 2 4 66 8 82.5 

Void 80 1 2 5 72 90 
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Table 8. Classification result using clustered_DWT based features 

Number of samples assigned into this class
Class

Number of 
training 
samples 

No
flaw

Delamination Debonding Void Recognition
rate (%) 

No flaw 80 74 0 2 4 92.5 
Delamination 80 0 70 7 3 87.5 
Debonding 80 1 4 68 7 85 

Void 80 1 2 4 73 91.25 

6. Conclusions

This paper presented a EMD_RSAR scheme to extract 
and select features for ultrasonic flaw signal 
classification. It first decomposed the original ultrasonic 
signal into a series of IMFs by using EMD, and 
extracted their corresponding traditional time and 
frequency domain based statistical parameters as the 
initial features. Then it utilized spectral clustering 
algorithm to divide values of each feature into some 
classes and substitute them with several discrete values. 
After that, the rough set attribute reduction method was 
applied for implementing the feature selection. Finally, 
BP networks were trained by input features obtained by 
different schemes, including EMD_PCA, EMD_RSAR, 
DWT_PCA and clustered_DWT. Experimental results 
showed that EMD_RSAR could achieve high 
classification accuracy and training efficiency with 
lower false positive as well as false negative, which is a 
promising feature extraction and selection scheme for 
flaw identification. 
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