Unlocking Sustainable Growth: The Transformative Impact of Green Finance on Industrial Carbon Emissions in China
Abstract
:1. Introduction
2. Literature Review
2.1. The Conception and Measurement of Green Finance
2.2. Concept and Measurement of Industrial Carbon Emissions
2.3. Research on the Correlation between Green Finance and Industrial Carbon Emissions
3. Methodology and Data
3.1. Measurement of Green Finance
3.2. Measurement of Industrial Carbon Emissions
3.3. Model Construction and Variable Selection
3.3.1. Construction of Econometric Models
3.3.2. Variable Selection
- Dependent Variable
- 2.
- Independent variable
- 3.
- Control variables
3.3.3. Data Sources and Description of Main Variables
4. Results and Discussion
4.1. Regression Results
- The green finance’s impact on industrial carbon dioxide emissions
- 2.
- Impact of technological innovation
- 3.
- Influence of industrial structure optimization
- 4.
- Impact of economic growth
- 5.
- Impact of environmental protection
- 6.
- Impact of foreign direct investment
4.2. Heterogeneity Analysis
- Eastern region
- 2.
- Central region
- 3.
- Western Region
4.3. Robustness Testing
- Total factor productivity
- 2.
- Per capita industrial carbon dioxide
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meo, M.S.; Karim, M.Z.A. The role of green finance in reducing CO2 emissions: An empirical analysis. Borsa Istanb. Rev. 2021, 22, 169–178. [Google Scholar] [CrossRef]
- Lee, C.C.; Hussain, J. An assessment of socioeconomic indicators and energy consumption by considering green financing. Resour. Policy 2023, 103374. [Google Scholar] [CrossRef]
- Zheng, Y.; Ye, X. An evaluation model of an urban green finance development level based on the GA-Optimized neural network. Math. Probl. Eng. 2022, 7847044. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Bi, K. The measurement of green finance index and the development forecast of green fnance in China. Environ. Ecol. Stat. 2021, 28, 263–285. [Google Scholar] [CrossRef]
- Lyu, B.; Da, J.Y.; Ostic, D.; Yu, H.C. 2022. How does green credit promote carbon reduction? A mediated model. Front. Environ. Sci. 2022, 10, 878060. [Google Scholar] [CrossRef]
- Sinha, A.; Mishra, S.; Sharif, A.; Yarovaya, L. Does green financing help to improve environmental & social responsibility? Designing SDG framework through advanced quantile modelling. J. Environ. Manag. 2021, 292, 112751. [Google Scholar] [CrossRef]
- Ronaldo, R.; Suryanto, T. Green finance and sustainability development goals in Indonesian Fund Village. Resour. Policy 2022, 78, 102839. [Google Scholar] [CrossRef]
- Abbas, J.; Wang, L.; Belgacem, S.B.; Pawar, P.S.; Najam, H.; Abbas, J. Investment in renewable energy and electricity output: Role of green finance, environmental tax, and geopolitical risk: Empirical evidence from China. Energy 2023, 269, 126683. [Google Scholar] [CrossRef]
- Song, M.; Xie, Q.; Shen, Z. Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints. Energy Policy 2021, 153, 112267. [Google Scholar] [CrossRef]
- Li, X.; Xia, G. China Green Finance Development Report; China Financial Publishing House: Beijing, China, 2014. [Google Scholar]
- Lin, M.; Xiao, Y. Research on the measurement and mechanism of green finance promoting high quality economic development. Contemp. Econ. Sci. 2023, 45, 101–113. [Google Scholar]
- Ren, X.; Tong, Z.; Sun, X.; Yan, C. Dynamic impacts of energy consumption on economic growth in China: Evidence from a non-parametric panel data model. Energy Econ. 2022, 107, 105855. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, X.; Zhang, R. Impact of green finance on economic development and environmental quality: A study based on provincial panel data from China. Environ. Sci. Pollut. Res. 2020, 27, 19915–19932. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Hao, Y.; Wu, H. How does green investment affect environmental pollution? Evidence from China. Environ. Resour. Econ. 2022, 81, 25–51. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment. Interim Measures for the Administration of Carbon Emissions Trading. 2021. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202103/W020210330371577301435 (accessed on 5 August 2024).
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and other biogeochemical cycles. In Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 465–570. [Google Scholar]
- Andrew, R.M. Global CO2 emissions from measurement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Yu, H.; Wei, W.; Li, J.; Li, Y. The impact of green digital finance on energy resources and climate change mitigation in carbon neutrality: Case of 60 economies. Resour. Policy 2022, 79, 103116. [Google Scholar] [CrossRef]
- Nenavath, S. Impact of fintech and green finance on environmental quality protection in India: By applying the semi-parametric difference-in-differences (SDID). Renew. Energy 2022, 193, 913–919. [Google Scholar] [CrossRef]
- Mamun, M.A.; Boubaker, S.; Nguyen, D.K. Green finance and decarbonization: Evidence from around the world. Financ. Res. Lett. 2022, 46, 102807. [Google Scholar] [CrossRef]
- Umar, M.; Safi, A. Do green finance and innovation matter for environmental protection? A case of OECD economies. Energy Econ. 2023, 119, 106560. [Google Scholar] [CrossRef]
- Lan, J.; Wei, Y.; Guo, J.; Li, Q.; Liu, Z. The effect of green finance on industrial pollution emissions: Evidence from China. Resour. Policy 2023, 80, 103156. [Google Scholar] [CrossRef]
- Ran, C.; Zhang, Y. The driving force of carbon emissions reduction in China: Does green finance work. J. Clean. Prod. 2023, 421, 138502. [Google Scholar] [CrossRef]
- Wang, J.; Tian, J.; Kang, Y.; Guo, K. Can green finance development abate carbon emissions: Evidence from China. Int. Rev. Econ. Financ. 2023, 88, 73–91. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, J.; Xu, S.; Tang, J.; Zhang, C. Green finance and industrial low-carbon transition: Evidence from a Quasi-Natural experiment in China. Sustainability 2023, 15, 4827. [Google Scholar] [CrossRef]
- Ren, Y.; Ding, Z.; Liu, J. How green finance boosts carbon efficiency in agriculture: A quasi-experiment from China. China Agric. Econ. Rev. 2024, 16, 267–289. [Google Scholar] [CrossRef]
- Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE 1982, 70, 939–952. Available online: https://ieeexplore.ieee.org/abstract/document/1456693 (accessed on 5 August 2024). [CrossRef]
- Lao, W.; Li, X.; Gong, Y.; Duan, X. Carbon Dioxide Emission Evaluations in the Chinese Furniture Manufacturing Industry Using the IPCC Tier-2 Methodology. For. Prod. J. 2023, 73, 6–12. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Du, E.; Liu, Y.; Zhang, S.; Yang, C.; Zhang, N.; Liu, C. A review on carbon emission accounting approaches for the electricity power industry. Appl. Energy 2024, 359, 122681. [Google Scholar] [CrossRef]
- Chen, A.; Chen, H. Decomposition analysis of green technology innovation from green patents in China. Math. Probl. Eng. 2021, 2021, 6672656. [Google Scholar] [CrossRef]
- Chao, X.; Shen, K. Urban-rural income gap, labor quality, and China’s economic growth. Econ. Res. J. 2014, 49, 30–43. [Google Scholar]
- Zhang, J.; Fu, X. FDI and environmental regulations in China. J. Asia Pac. Econ. 2008, 13, 332–353. [Google Scholar] [CrossRef]
- Cao, X.; Jiang, L.; Yu, Y. Carbon emission effect of foreign investment and its influence on carbon peaking. Clim. Chang. Res. 2024, 20, 205–219. [Google Scholar]
- Zhang, C.; Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev. 2016, 58, 943–951. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S. How do FDI and technological innovation affect carbon emission efficiency in China? Energies 2022, 15, 9209. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y. How does green finance affect CO2 emissions? Heterogeneous and mediation effects analysis. Front. Environ. Sci. 2022, 10, 931086. [Google Scholar] [CrossRef]
Primary Indicators | Characteristic Index | Indicator Description | Indicator Attribute | References |
---|---|---|---|---|
Green Credit | Proportion of interest expenses in high-energy-consuming industries | Interest expenses for six high-energy-consuming industrial industries | - | Song, et al. (2021) [9] |
Green Insurance | Depth of crop insurance | Income from crop insurance/total agricultural output value | + | Li and Xia,2014 [10]; Lin, 2023 [11] |
Green Investment | Proportion of pollution control expenditure to GDP | Pollution control expenditure/GDP | + | Ren, et al. (2022) [12] |
Government Support | Proportion of fiscal environmental protection | fiscal expenditure on environmental protection/fiscal expenditure | - | Zhou et al. (2020) [13] |
Criterion Layer | Indicator Layer | Weight |
---|---|---|
Green credit | Proportion of interest expenses in high-energy-consuming industries | 11.56% |
Green insurance | Depth of crop insurance | 50.53% |
Green investment | Proportion of pollution control expenditure to GDP | 33.15% |
Government support | Proportion of fiscal environmental protection | 4.75% |
Type | Conversion Coefficient of Standard Coal |
---|---|
raw coal | 0.7143 tce/t |
gasoline | 1.4714 tce/t |
fuel oil | 1.4286 tce/t |
coke | 0.9714 tce/t |
kerosene | 1.4714 tce/t |
natural gas | 13.300 tce/104 m3 |
crude oil | 1.4286 tce/t |
diesel oil | 1.4571 tce/t |
electricity | 1.229 tce/104 kw·h |
Type | Carbon Emissions Factors (t Carbon/tce) |
---|---|
Raw coal | 0.7476 |
Gasoline | 0.5532 |
Fuel oil | 0.6176 |
Coke | 0.1128 |
Kerosene | 0.3416 |
Natural gas | 0.4479 |
Crude oil | 0.5854 |
Diesel oil | 0.5913 |
Electricity | 2.2132 |
Variable | Minimum | Maximum | Average | Standard Deviation | Description |
---|---|---|---|---|---|
C | 5.460 | 8.752 | 7.466 | 0.561 | Logarithm of industrial carbon emissions |
GS | 0.047 | 0.796 | 0.211 | 0.095 | Green finance development level index |
LP | 0.000 | 1226.000 | 254.723 | 274.099 | Number of green patents authorized |
IS | 0.242 | 0.590 | 0.451 | 0.061 | Added value of secondary industry/GDP |
lnGDP | 7.188 | 9.721 | 8.488 | 0.475 | GDP/year-end resident population |
FDI | 0.000 | 0.121 | 0.022 | 0.020 | Foreign direct investment/local GDP |
EP | 0.012 | 0.058 | 0.031 | 0.009 | Energy conservation and environmental protection expenditure/GDP |
Variable | (1) RE | (2) RE | (3) FE | (4) FE | (5) Bidirectional Fixation |
---|---|---|---|---|---|
GS | 0.453 ** (2.253) | −0.763 ** (−3.335) | 0.463 ** (2.265) | −0.859 *** (−3.919) | −0.972 *** (−4.283) |
LP | −0.000 (−1.222) | −0.000 ** (−2.100) | −0.000 *** (−2.804) | ||
IS | −0.629 ** (−2.053) | −0.696 * (−2.377) | −0.599 * (−1.936) | ||
lnGDP | 0.374 *** (6.568) | 0.414 *** (7.436) | 0.233 ** (2.034) | ||
EP | −1.316 * (−0.910) | −0.908 * (−0.657) | −0.894 (−0.602) | ||
FDI | −0.145 (−0.177) | 0.082 (0.104) | 0.884 (0.965) | ||
R2 | 0.054 | 0.274 | 0.054 | 0.277 | 0.103 |
N | 300 | 300 | 300 | 300 | 300 |
Variable | Coef | Std. Err | t | p | 95%CI |
---|---|---|---|---|---|
GS | −0.972 | 0.227 | −4.283 | 0.0020 *** | −1.417~−0.527 |
LP | −0.000 | 0.000 | −2.804 | 0.005 *** | −0.000~−0.000 |
IS | −0.599 | 0.309 | −1.936 | 0.054 * | −1.205~0.008 |
lnGDP | 0.233 | 0.114 | 2.034 | 0.043 ** | 0.008~0.457 |
EP | −0.894 | 1.484 | −0.602 | 0.547 | −3.803~2.015 |
FDI | 0.844 | 0.875 | 0.965 | 0.335 | −0.870~2.559 |
F(6,255) = 5.062, p = 0.000 | |||||
R2 = −0.108, R2(adjusted) = 0.103 |
Term | Nationwide | East Region | Central Region | West Region |
---|---|---|---|---|
GS | −0.972 *** (−4.283) | −1.071 *** (−3.246) | −2.576 *** (−4.290) | −0.937 * (−1.960) |
LP | −0.000 *** (−2.804) | −0.000 * (−1.581) | 0.000 ** (2.335) | −0.000 *** (−2.726) |
IS | −0.599 * (−1.936) | −0.606 (−0.921) | −1.547 *** (−3.014) | −0.143 (−0.332) |
lnGDP | 0.233 ** (2.034) | 0.172 (0.701) | 0.174 (0.831) | −0.404 * (−1.914) |
FDI | −0.894 (−0.602) | 0.373 (0.302) | 8.132 * (1.941) | 4.097 (1.432) |
EP | 0.884 (0.965) | 1.566 (0.567) | 2.250 (0.548) | −1.788 (−0.712) |
R2(adjusted) | 0.103 | 0.048 | 0.009 | −2.545 |
sample size | 300 | 110 | 90 | 100 |
Variable | Coef | Std. Err | t | p | 95%CI |
---|---|---|---|---|---|
GS | −0.936 | 0.210 | −4.461 | 0.000 *** | −1.167~−0.237 |
TFP | −0.164 | 0.026 | −6.437 | 0.000 *** | −0.214~−0.114 |
IS | −0.175 | 0.300 | −0.583 | 0.7560 | −0.762~0.412 |
lnGDP | 0.284 | 0.108 | 2.634 | 0.009 ** | 0.073~0.495 |
EP | −0.236 | 1.396 | −0.169 | 0.866 | −2.973~2.500 |
FDI | 0.581 | 0.819 | 0.709 | 0.479 | −1.025~2.187 |
F(6,255) = 11.137, p = 0.000 | |||||
R2 = −0.310, R2(adjusted) = 0.323 |
Variable | Coef | Std. Err | t | p | 95%CI |
---|---|---|---|---|---|
GS | −0.122 | 0.064 | −1.910 | 0.057 * | −0.247~0.003 |
LP | −0.000 | 0.000 | −2.605 | 0.010 ** | −0.000~−0.000 |
IS | −0.175 | 0.087 | −2.013 | 0.045 * | −0.345~−0.005 |
lnGDP | 0.047 | 0.032 | 1.463 | 0.145 | −0.016~0.110 |
FDI | 0.334 | 0.246 | 1.360 | 0.175 | −0.147~0.816 |
EP | −0.382 | 0.417 | −0.915 | 0.361 | −1.199~0.436 |
F(6,255) = 3.054, p = 0.007 | |||||
R2 = 0.011, R2(adjusted) = 0.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, S.; Ahmad, N.; Wang, S.; Zhao, J. Unlocking Sustainable Growth: The Transformative Impact of Green Finance on Industrial Carbon Emissions in China. Sustainability 2024, 16, 8253. https://doi.org/10.3390/su16188253
Zhao X, Zhang S, Ahmad N, Wang S, Zhao J. Unlocking Sustainable Growth: The Transformative Impact of Green Finance on Industrial Carbon Emissions in China. Sustainability. 2024; 16(18):8253. https://doi.org/10.3390/su16188253
Chicago/Turabian StyleZhao, Xi, Siqin Zhang, Najid Ahmad, Shuangguo Wang, and Jiaxing Zhao. 2024. "Unlocking Sustainable Growth: The Transformative Impact of Green Finance on Industrial Carbon Emissions in China" Sustainability 16, no. 18: 8253. https://doi.org/10.3390/su16188253
APA StyleZhao, X., Zhang, S., Ahmad, N., Wang, S., & Zhao, J. (2024). Unlocking Sustainable Growth: The Transformative Impact of Green Finance on Industrial Carbon Emissions in China. Sustainability, 16(18), 8253. https://doi.org/10.3390/su16188253